The shaving process has been regarded as one of the major solutions for preparing edges with precise dimensions in the sheet metal cutting industry. However, currently, the limitation of this process is the number of shaving operations, especially for thick metal sheets. When thicker sheet metal is shaved, more cutting operations are required, and the cost of production is higher. In the present research, a modified die with two steps of taper shape, press and cut tapers, was proposed and designed to achieve a good shaved edge on thick sheet metal by using one shaving stroke. The finite element method (FEM) was used to clarify the cutting mechanism and identify the effects of the shape, geometry, and other parameters of the shaving die on the characteristics of the shaved edge based on analyses of material flows and stress distributions. The press taper caused an increase in the compressive stress on the shaving allowance during the shaping phase, and the cut taper caused an increase in the compressive stress on the shearing zone during the shearing phase. By using one shaving stroke with this cutting mechanism, crack formation could be delayed, and a smooth surface though the material thickness could be obtained. Laboratory experiments were conducted to validate the FEM simulations. The FEM results showed good agreement with the experimental results for the characteristics of the cut surface and the cutting forces.