Spectral properties of local and nonlocal problems for the diffusion-wave equation of fractional order

被引:0
|
作者
Adil, N.
Berdyshev, A. S. [1 ]
机构
[1] Abai Kazakh Natl Pedag Univ, Alma Ata, Kazakhstan
来源
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS | 2023年 / 110卷 / 02期
关键词
diffusion-wave equations; fractional order equations; boundary value problems; strong solution; Volterra property; eigenvalue; BOUNDARY-VALUE PROBLEM; MIXED-TYPE EQUATION; ROOT FUNCTIONS; SYSTEM; SOLVABILITY;
D O I
10.31489/2023M2/4-20
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper investigates the issues of solvability and spectral properties of local and nonlocal problems for the fractional order diffusion-wave equation. The regular and strong solvability to problems stated in the domains, both with characteristic and non-characteristic boundaries are proved. Unambiguous solvability is established and theorems on the existence of eigenvalues or the Volterra property of the problems under consideration are proved.
引用
收藏
页码:4 / 20
页数:17
相关论文
共 50 条
  • [1] Solvability and Volterra property of nonlocal problems for mixed fractional-order diffusion-wave equation
    Nauryzbay Adil
    Abdumauvlen S. Berdyshev
    B. E. Eshmatov
    Zharasbek D. Baishemirov
    Boundary Value Problems, 2023
  • [2] Solvability and Volterra property of nonlocal problems for mixed fractional-order diffusion-wave equation (vol 2023, 47, 2023)
    Adil, Nauryzbay
    Berdyshev, Abdumauvlen S.
    Eshmatov, B. E.
    Baishemirov, Zharasbek D.
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [3] Cauchy and Signaling Problems for the Time-Fractional Diffusion-Wave Equation
    Luchko, Yuri
    Mainardi, Francesco
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2014, 136 (05):
  • [4] A compact difference scheme for the fractional diffusion-wave equation
    Du, R.
    Cao, W. R.
    Sun, Z. Z.
    APPLIED MATHEMATICAL MODELLING, 2010, 34 (10) : 2998 - 3007
  • [5] Fractional Diffusion-Wave Equation with Application in Electrodynamics
    Pskhu, Arsen
    Rekhviashvili, Sergo
    MATHEMATICS, 2020, 8 (11) : 1 - 13
  • [6] An efficient numerical treatment of fourth-order fractional diffusion-wave problems
    Li, Xuhao
    Wong, Patricia J. Y.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (04) : 1324 - 1347
  • [7] ON A NON-LOCAL PROBLEM FOR A MULTI-TERM FRACTIONAL DIFFUSION-WAVE EQUATION
    Ruzhansky, Michael
    Tokmagambetov, Niyaz
    Torebek, Berikbol T.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (02) : 324 - 355
  • [8] Non-Local Problems for the Fractional Order Diffusion Equation and the Degenerate Hyperbolic Equation
    Ruziev, Menglibay
    Parovik, Roman
    Zunnunov, Rakhimjon
    Yuldasheva, Nargiza
    FRACTAL AND FRACTIONAL, 2024, 8 (09)
  • [9] Problem of Determining the Time Dependent Coefficient in the Fractional Diffusion-Wave Equation
    Subhonova, Z. A.
    Rahmonov, A. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2021, 42 (15) : 3747 - 3760
  • [10] The analytical solution and numerical solution of the fractional diffusion-wave equation with damping
    Chen, J.
    Liu, F.
    Anh, V.
    Shen, S.
    Liu, Q.
    Liao, C.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) : 1737 - 1748