Realization of a fractional quantum Hall state with ultracold atoms

被引:61
作者
Leonard, Julian [1 ,7 ]
Kim, Sooshin [1 ]
Kwan, Joyce [1 ]
Segura, Perrin [1 ]
Grusdt, Fabian [2 ,3 ,4 ]
Repellin, Cecile [5 ]
Goldman, Nathan [6 ]
Greiner, Markus [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Ludwig Maximilians Univ Munchen, Dept Phys, Munich, Germany
[3] Ludwig Maximilians Univ Munchen, ASC, Munich, Germany
[4] Munich Ctr Quantum Sci & Technol MCQST, Munich, Germany
[5] Univ Grenoble Alpes, CNRS, LPMMC, Grenoble, France
[6] Univ Libre Bruxelles, Ctr Nonlinear Phenomena & Complex Syst CENOLI, Brussels, Belgium
[7] TU Wien, Vienna Ctr Quantum Sci & Technol, Atominstitut, Vienna, Austria
基金
瑞士国家科学基金会; 美国国家科学基金会; 欧洲研究理事会;
关键词
HOFSTADTER BANDS; FLUID; MODEL;
D O I
10.1038/s41586-023-06122-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Strongly interacting topological matter(1) exhibits fundamentally new phenomena with potential applications in quantum information technology(2,3). Emblematic instances are fractional quantum Hall (FQH) states(4), in which the interplay of a magnetic field and strong interactions gives rise to fractionally charged quasi-particles, long-ranged entanglement and anyonic exchange statistics. Progress in engineering synthetic magnetic fields(5-21) has raised the hope to create these exotic states in controlled quantum systems. However, except for a recent Laughlin state of light(22), preparing FQH states in engineered systems remains elusive. Here we realize a FQH state with ultracold atoms in an optical lattice. The state is a lattice version of a bosonic ? = 1/2 Laughlin state(4,23) with two particles on 16 sites. This minimal system already captures many hallmark features of Laughlin-type FQH states(24-28): we observe a suppression of two-body interactions, we find a distinctive vortex structure in the density correlations and we measure a fractional Hall conductivity of s(H)/s(0) = 0.6(2) by means of the bulk response to a magnetic perturbation. Furthermore, by tuning the magnetic field, we map out the transition point between the normal and the FQH regime through a spectroscopic investigation of the many-body gap. Our work provides a starting point for exploring highly entangled topological matter with ultracold atoms(29-33).
引用
收藏
页码:495 / +
页数:14
相关论文
共 53 条
  • [1] Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms
    Aidelsburger, M.
    Lohse, M.
    Schweizer, C.
    Atala, M.
    Barreiro, J. T.
    Nascimbene, S.
    Cooper, N. R.
    Bloch, I.
    Goldman, N.
    [J]. NATURE PHYSICS, 2015, 11 (02) : 162 - 166
  • [2] Direct observation of chiral currents and magnetic reflection in atomic flux lattices
    An, Fangzhao Alex
    Meier, Eric J.
    Gadway, Bryce
    [J]. SCIENCE ADVANCES, 2017, 3 (04):
  • [3] Measuring quantized circular dichroism in ultracold topological matter
    Asteria, Luca
    Duc Thanh Tran
    Ozawa, Tomoki
    Tarnowski, Matthias
    Rem, Benno S.
    Flaeschner, Nick
    Sengstock, Klaus
    Goldman, Nathan
    Weitenberg, Christof
    [J]. NATURE PHYSICS, 2019, 15 (05) : 449 - +
  • [4] A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice
    Bakr, Waseem S.
    Gillen, Jonathon I.
    Peng, Amy
    Foelling, Simon
    Greiner, Markus
    [J]. NATURE, 2009, 462 (7269) : 74 - U80
  • [5] Continuous Preparation of a Fractional Chern Insulator
    Barkeshli, M.
    Yao, N. Y.
    Laumann, C. R.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (02)
  • [6] CIAN ZP, 2021, PHYS REV LETT, V126
  • [7] Observation of Laughlin states made of light
    Clark, Logan W.
    Schine, Nathan
    Baum, Claire
    Jia, Ningyuan
    Simon, Jonathan
    [J]. NATURE, 2020, 582 (7810) : 41 - +
  • [8] Cooper NR, 2019, REV MOD PHYS, V91, DOI [10.1103/revmodphys.91.015005, 10.1103/RevModPhys.91.015005]
  • [9] Rapidly rotating atomic gases
    Cooper, N. R.
    [J]. ADVANCES IN PHYSICS, 2008, 57 (06) : 539 - 616
  • [10] Colloquium: Atomic quantum gases in periodically driven optical lattices
    Eckardt, Andre
    [J]. REVIEWS OF MODERN PHYSICS, 2017, 89 (01)