Direct-Numerical Simulation with the Stability Theory for Turbulent Transition in Hypersonic Boundary Layer

被引:2
|
作者
Bae, Hajun [1 ]
Lim, Jiseop [1 ]
Kim, Minwoo [1 ]
Jee, Solkeun [1 ]
机构
[1] Gwangju Inst Sci & Technol GIST, Sch Mech Engn, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea
基金
新加坡国家研究基金会;
关键词
Turbulent transition; Hypersonic boundary layer; Direct-numerical simulation (DNS); Linear stability theory (LST); Mack second mode; BREAKDOWN;
D O I
10.1007/s42405-023-00626-z
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Laminar-to-turbulent transition in hypersonic boundary layer is numerically investigated using the direct-numerical simulation (DNS) method combined with the linear stability theory (LST). The DNS-LST framework is validated first for 2D hypersonic boundary layer. The growth of the Mack second mode is matched well to previous DNS data. A complete 3D turbulent transition at Mach 6 is computed in the current DNS to demonstrate the capability of the current method for a whole 3D turbulent transition scenario. Two modes are assigned at the DNS inlet for the fundamental breakdown in the hypersonic boundary layer: the Mack second mode (the fundamental mode) and the pair of oblique waves of the fundamental frequency. These instability modes are obtained from the stability analysis. The current DNS successfully resolves the 3D turbulent transition in the hypersonic boundary layer. Computational data are investigated to identify major flow features associated with the fundamental breakdown phenomena. Major instability modes are analyzed in the late transient stage.
引用
收藏
页码:1004 / 1014
页数:11
相关论文
共 50 条
  • [31] Direct Numerical Simulation of a Turbulent Boundary Layer with Passive Scalar Transport
    Li, Qiang
    Schlatter, Philipp
    Brandt, Luca
    Henningson, Dan S.
    DIRECT AND LARGE-EDDY SIMULATION VII, 2010, 13 : 329 - 335
  • [32] Direct numerical simulation of jets in a cross turbulent boundary layer flow
    Hahn, Seonghyeon
    Choi, Haecheon
    Proceedings of the Conference on High Performance Computing on the Information Superhighway, HPC Asia'97, 1997, : 186 - 191
  • [33] Direct numerical simulation of a turbulent boundary layer over an oscillating wall
    Yudhistira, Indra
    Skote, Martin
    JOURNAL OF TURBULENCE, 2011, 12 (09): : 1 - 17
  • [34] Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5
    Guarini, SE
    Moser, RD
    Shariff, K
    Wray, A
    JOURNAL OF FLUID MECHANICS, 2000, 414 : 1 - 33
  • [35] Direct numerical simulation of the incompressible temporally developing turbulent boundary layer
    Kozul, M.
    Chung, D.
    Monty, J. P.
    JOURNAL OF FLUID MECHANICS, 2016, 796 : 437 - 472
  • [36] Direct numerical simulation of a three-dimensional turbulent boundary layer
    Moin, P.
    Shih, S.
    Sendstad, O.
    Driver, D.
    American Society of Mechanical Engineers, Applied Mechanics Division, AMD, 1988, 95 : 139 - 145
  • [37] Direct numerical simulation of turbulent boundary layer over a rough wall
    Liu, Xiao-Fei
    Wei, An-Yang
    Luo, Kun
    Fan, Jian-Ren
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2014, 35 (12): : 2425 - 2428
  • [38] Direct numerical simulation techniques for hypersonic turbulent flows
    Li, Xinliang
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2015, 36 (01): : 147 - 158
  • [39] Direct numerical simulation of transition to turbulence in a supersonic boundary layer
    Kudryavtsev, A. N.
    Khotyanovsky, D. V.
    THERMOPHYSICS AND AEROMECHANICS, 2015, 22 (05) : 559 - 568
  • [40] Direct numerical simulation of transition to turbulence in a supersonic boundary layer
    Kudryavtsev A.N.
    Khotyanovsky D.V.
    Thermophysics and Aeromechanics, 2015, 22 (5) : 559 - 568