Aim: To develop imeglimin-inspired novel 1,3,5-triazine derivatives as antidiabetic agents. Materials & methods: These derivatives were synthesized and tested against DPP enzymes. Compound 8c was tested for in vivo antidiabetic activity in streptozotocin-induced diabetes in Wistar rats by estimating various biochemical parameters. Docking experiments were also performed. Results: Compound 8c was identified as a selective and potent DPP-4 inhibitor. It was proficiently docked into the catalytic triad of Ser 630, Asp 710 and His740 in S1 and S2 pockets of DPP-4. In experimental animals, it also showed dose-dependent improvement in blood glucose, blood insulin, bodyweight, lipid profile and kidney and liver antioxidant profiles. Conclusion: This study demonstrated the discovery of imeglimin-inspired novel 1,3,5-triazines as a potent antidiabetic agent. Tweetable abstract#DPP-4 Inhibitors: Researchers at #SHUATS, India, discovered a novel class of antidiabetic agents, @UdayUdaysingh98 @shuats_edu Plain language summaryType 2 diabetes mellitus is a complicated heterogeneous and polygenic metabolic disease. Therefore, in search of a potent antidiabetic drug, the authors have synthesized 13 novel 1,3,5-triazine-morpholino-pyrazole derivatives, compounds 8(a-m), and they were subsequently tested for in vitro inhibitory activity against a panel of DPP enzymes (DPP-4, DPP-8 and DPP-9) where they are found active toward DPP-4 while inactive toward DPP-8 and DPP-9. Compound 8c was observed to be the most potent DPP-4 inhibitor and showed excellent interaction with DPP-4 in docking analysis. Furthermore, in high-fat, low-dose streptozotocin-induced diabetes in rats, compound 8c significantly reduced blood glucose, cholesterol, triglyceride, low-density lipoprotein, very low-density lipoprotein and reactive species levels and increased high-density lipoprotein levels, possibly by the potent inhibition of DPP-4. It also showed intense antioxidant activity. The potent DPP-4 inhibition, antidiabetic and antioxidant activity render compound 8c a probable lead for antidiabetic drug discovery.