Perturbed Toeplitz Matrices and Their LU-Decompositions

被引:1
作者
Chu, Wenchang [1 ,2 ]
Kilic, Emrah [3 ]
机构
[1] Zhoukou Normal Univ, Sch Math & Stat, Zhoukou 466001, Henan, Peoples R China
[2] Univ Salento, Dept Math & Phys, I-73100 Lecce, Italy
[3] TOBB Univ Econ & Technol, TR-06560 Ankara, Turkiye
关键词
Toeplitz matrix; tetradiagonal matrix; LU-decomposition; determinant; EIGENVALUES;
D O I
10.1134/S0001434623010054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two tetradiagonal Toeplitz matrices perturbed by a 2 x 2 matrix at the upper right corner are examined. Their LU-decompositions are explicitly given. As a consequence, their determinant evaluations confirm the conjectured determinant values of two numerical matrices made recently by Andelic and Fonseca (2020).
引用
收藏
页码:39 / 48
页数:10
相关论文
共 50 条
  • [31] Tridiagonal Toeplitz matrices: properties and novel applications
    Noschese, Silvia
    Pasquini, Lionello
    Reichel, Lothar
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (02) : 302 - 326
  • [33] Perturbed block Toeplitz matrices and the non-Hermitian skin effect in dimer systems of subwavelength resonators
    Ammari, Habib
    Barandun, Silvio
    Liu, Ping
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2025, 195
  • [34] Toeplitz matrices are unitarily similar to symmetric matrices
    Chien, Mao-Ting
    Liu, Jianzhen
    Nakazato, Hiroshi
    Tam, Tin-Yau
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (10) : 2131 - 2144
  • [35] NONCIRCULANT TOEPLITZ MATRICES ALL OF WHOSE POWERS ARE TOEPLITZ
    Griffin, Kent
    Stuart, Jeffrey L.
    Tsatsomeros, Michael J.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 1185 - 1193
  • [36] Infinite limitedly-toeplitz extensions of Toeplitz matrices
    Il'in S.N.
    Journal of Mathematical Sciences, 2006, 132 (2) : 160 - 165
  • [37] Noncirculant Toeplitz matrices all of whose powers are Toeplitz
    Kent Griffin
    Jeffrey L. Stuart
    Michael J. Tsatsomeros
    Czechoslovak Mathematical Journal, 2008, 58 : 1185 - 1193
  • [38] Companion matrices and their relations to Toeplitz and Hankel matrices
    Luo, Yousong
    Hill, Robin
    SPECIAL MATRICES, 2015, 3 (01): : 214 - 226
  • [39] PERTURBATION BOUNDS FOR THE LDLH AND LU DECOMPOSITIONS
    BARRLUND, A
    BIT, 1991, 31 (02): : 358 - 363
  • [40] A note on inversion of Toeplitz matrices
    Lv, Xiao-Guang
    Huang, Ting-Zhu
    APPLIED MATHEMATICS LETTERS, 2007, 20 (12) : 1189 - 1193