Pretreatment ultrasound-based deep learning radiomics model for the early prediction of pathologic response to neoadjuvant chemotherapy in breast cancer

被引:17
|
作者
Yu, Fei-Hong [1 ]
Miao, Shu-Mei [2 ,3 ]
Li, Cui-Ying [1 ]
Hang, Jing [1 ]
Deng, Jing [1 ]
Ye, Xin-Hua [1 ]
Liu, Yun [2 ,3 ]
机构
[1] Nanjing Med Univ, Affiliated Hosp 1, Dept Ultrasound, Nanjing, Peoples R China
[2] Nanjing Med Univ, Affiliated Hosp 1, Dept Informat, Nanjing, Peoples R China
[3] Nanjing Med Univ, Sch Biomed Engn & Informat, Dept Med Informat, Nanjing, Peoples R China
关键词
Deep learning; Neoadjuvant chemotherapy; Ultrasonography; Breast neoplasms; ELASTOGRAPHY; THERAPY; MRI;
D O I
10.1007/s00330-023-09555-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesTo investigate the predictive performance of the deep learning radiomics (DLR) model integrating pretreatment ultrasound imaging features and clinical characteristics for evaluating therapeutic response after neoadjuvant chemotherapy (NAC) in patients with breast cancer.MethodsA total of 603 patients who underwent NAC were retrospectively included between January 2018 and June 2021 from three different institutions. Four different deep convolutional neural networks (DCNNs) were trained by pretreatment ultrasound images using annotated training dataset (n = 420) and validated in a testing cohort (n = 183). Comparing the predictive performance of these models, the best one was selected for image-only model structure. Furthermore, the integrated DLR model was constructed based on the image-only model combined with independent clinical-pathologic variables. Areas under the curve (AUCs) of these models and two radiologists were compared by using the DeLong method.ResultsAs the optimal basic model, Resnet50 achieved an AUC and accuracy of 0.879 and 82.5% in the validation set. The integrated DLR model, yielding the highest classification performance in predicting response to NAC (AUC 0.962 and 0.939 in the training and validation cohort), outperformed the image-only model and the clinical model and also performed better than two radiologists' prediction (all p < 0.05). In addition, predictive efficacy of the radiologists was improved under the assistance of the DLR model significantly.ConclusionThe pretreatment US-based DLR model could hold promise as a clinical guidance for predicting NAC response of patients with breast cancer, thereby providing benefit of timely treatment strategy adjustment to potential poor NAC responders.
引用
收藏
页码:5634 / 5644
页数:11
相关论文
共 50 条
  • [41] Prediction of pathologic complete response to neoadjuvant chemotherapy using machine learning models in patients with breast cancer
    Kim, Ji-Yeon
    Jeon, Eunjoo
    Kwon, Soonhwan
    Jung, Hyungsik
    Joo, Sunghoon
    Park, Youngmin
    Lee, Se Kyung
    Lee, Jeong Eon
    Nam, Seok Jin
    Cho, Eun Yoon
    Park, Yeon Hee
    Ahn, Jin Seok
    Im, Young-Hyuck
    BREAST CANCER RESEARCH AND TREATMENT, 2021, 189 (03) : 747 - 757
  • [42] Magnetic resonance imaging of the breast and radiomics analysis for an improved early prediction of the response to neoadjuvant chemotherapy in breast cancer patients
    Pinker-Domenig, Katja
    Tahmassebi, Amirhessam
    Wengert, Georg
    Helbich, Thomas H.
    Bago-Horvath, Zsuzsanna
    Morris, Elizabeth A.
    Meyer-Baese, Anke
    CANCER RESEARCH, 2018, 78 (13)
  • [43] Prediction of pathologic complete response to neoadjuvant chemotherapy using machine learning models in patients with breast cancer
    Ji-Yeon Kim
    Eunjoo Jeon
    Soonhwan Kwon
    Hyungsik Jung
    Sunghoon Joo
    Youngmin Park
    Se Kyung Lee
    Jeong Eon Lee
    Seok Jin Nam
    Eun Yoon Cho
    Yeon Hee Park
    Jin Seok Ahn
    Young-Hyuck Im
    Breast Cancer Research and Treatment, 2021, 189 : 747 - 757
  • [44] Early prediction of response to neoadjuvant chemotherapy using contrast-enhanced ultrasound in breast cancer
    Peng, Juan
    Pu, Huan
    Jia, Yan
    Chen, Chuang
    Ke, Xiao-Kang
    Zhou, Qing
    MEDICINE, 2021, 100 (19)
  • [45] Deep Learning of Multimodal Ultrasound: Stratifying the Response to Neoadjuvant Chemotherapy in Breast Cancer Before Treatment
    Gu, Jionghui
    Zhong, Xian
    Fang, Chengyu
    Lou, Wenjing
    Fu, Peifen
    Woodruff, Henry C.
    Wang, Baohua
    Jiang, Tianan
    Lambin, Philippe
    ONCOLOGIST, 2024, 29 (02): : e187 - e197
  • [46] Four-Dimensional Machine Learning Radiomics for the Pretreatment Assessment of Breast Cancer Pathologic Complete Response to Neoadjuvant Chemotherapy in Dynamic Contrast-Enhanced MRI
    Caballo, Marco
    Sanderink, Wendelien B. G.
    Han, Luyi
    Gao, Yuan
    Athanasiou, Alexandra
    Mann, Ritse M.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 57 (01) : 97 - 110
  • [47] Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI
    Braman, Nathaniel M.
    Etesami, Maryam
    Prasanna, Prateek
    Dubchuk, Christina
    Gilmore, Hannah
    Tiwari, Pallavi
    Pletcha, Donna
    Madabhushi, Anant
    BREAST CANCER RESEARCH, 2017, 19
  • [48] Pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: Perfusion metrics of dynamic contrast enhanced MRI
    Lee, Jeongmin
    Kim, Sung Hun
    Kang, Bong Joo
    SCIENTIFIC REPORTS, 2018, 8
  • [49] Longitudinal ultrasound-based AI model predicts axillary lymph node response to neoadjuvant chemotherapy in breast cancer: a multicenter study
    Fu, Ying
    Lei, Yu-Tao
    Huang, Yu-Hong
    Mei, Fang
    Wang, Song
    Yan, Kun
    Wang, Yi-Hua
    Ma, Yi-Han
    Cui, Li-Gang
    EUROPEAN RADIOLOGY, 2024, 34 (11) : 7080 - 7089
  • [50] Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI
    Nathaniel M. Braman
    Maryam Etesami
    Prateek Prasanna
    Christina Dubchuk
    Hannah Gilmore
    Pallavi Tiwari
    Donna Plecha
    Anant Madabhushi
    Breast Cancer Research, 19