AUTOMATIC 2D AND 3D SEGMENTATION OF GLIOBLASTOMA BRAIN TUMOR

被引:2
作者
Precious, J. Glory [1 ]
Kirubha, S. P. Angeline [1 ,2 ]
Premkumar, R. [1 ]
Evangeline, I. Keren [1 ]
机构
[1] Rajalakshmi Engn Coll, SRM Inst Sci & Technol, Dept Biomed Engn, Chennai, Tamil Nadu, India
[2] Rajalakshmi Engn Coll, SRM Inst Sci & Technol, Dept Biomed Engn, Chennai 603203, Tamil Nadu, India
来源
BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS | 2023年 / 35卷 / 02期
关键词
MRI-; FLAIR; Brain segmentation; MobilenetV2; U-net; Deep neural network; Bratumia software; IMAGE; SURVIVAL;
D O I
10.4015/S1016237222500557
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The brain tumor is the most common destructive and deadly disease. In general, various imaging modalities such as CT, MRI and PET are used to evaluate the brain tumor. Magnetic resonance imaging (MRI) is a prominent diagnostic method for evaluating these tumors. Gliomas, due to their malignant nature and rapid development, are the most common and aggressive form of brain tumors. In the clinical routine, the method of identifying tumor borders from healthy cells is still a difficult task. Manual segmentation takes time, so we use a deep convolutional neural network to improve efficiency. We present a combined DNN architecture using U-net and MobilenetV2. It exploits both local characteristics and more global contextual characteristics from the 2D MRI FLAIR images. The proposed network has encoder and decoder architecture. The performance metrices such as dice loss, dice coefficient, accuracy and IOU have been calculated. Automated segmentation of 3D MRI is essential for the identification, assessment, and treatment of brain tumors although there is significant interest in machine-learning algorithms for computerized segmentation of brain tumors. The goal of this work is to perform 3D volumetric segmentation using BraTumIA. It is a widely available software application used to separate tumor characteristics on 3D brain MR volumes. BraTumIA has lately been used in a number of clinical trials. In this work, we have segmented 2D slices and 3D volumes of MRI brain tumor images.
引用
收藏
页数:8
相关论文
共 20 条
[1]  
Balafar MA, 2011, NEUROSCIENCES, V16, P242
[2]   A survey of MRI-based medical image analysis for brain tumor studies [J].
Bauer, Stefan ;
Wiest, Roland ;
Nolte, Lutz-P ;
Reyes, Mauricio .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (13) :R97-R129
[3]   Deep learning neural networks for medical image segmentation of brain tumours for diagnosis: a recent review and taxonomy [J].
Devunooru, Sindhu ;
Alsadoon, Abeer ;
Chandana, P. W. C. ;
Beg, Azam .
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (01) :455-483
[4]   GBM Volumetry using the 3D Slicer Medical Image Computing Platform [J].
Egger, Jan ;
Kapur, Tina ;
Fedorov, Andriy ;
Pieper, Steve ;
Miller, James V. ;
Veeraraghavan, Harini ;
Freisleben, Bernd ;
Golby, Alexandra J. ;
Nimsky, Christopher ;
Kikinis, Ron .
SCIENTIFIC REPORTS, 2013, 3
[5]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341
[6]   MR Imaging Predictors of Molecular Profile and Survival: Multi-institutional Study of the TCGA Glioblastoma Data Set [J].
Gutman, David A. ;
Cooper, Lee A. D. ;
Hwang, Scott N. ;
Holder, Chad A. ;
Gao, JingJing ;
Aurora, Tarun D. ;
Dunn, William D., Jr. ;
Scarpace, Lisa ;
Mikkelsen, Tom ;
Jain, Rajan ;
Wintermark, Max ;
Jilwan, Manal ;
Raghavan, Prashant ;
Huang, Erich ;
Clifford, Robert J. ;
Mongkolwat, Pattanasak ;
Kleper, Vladimir ;
Freymann, John ;
Kirby, Justin ;
Zinn, Pascal O. ;
Moreno, Carlos S. ;
Jaffe, Carl ;
Colen, Rivka ;
Rubin, Daniel L. ;
Saltz, Joel ;
Flanders, Adam ;
Brat, Daniel J. .
RADIOLOGY, 2013, 267 (02) :560-569
[7]   Volumetric and MGMT parameters in glioblastoma patients: Survival analysis [J].
Iliadis, Georgios ;
Kotoula, Vassiliki ;
Chatzisotiriou, Athanasios ;
Televantou, Despina ;
Eleftheraki, Anastasia G. ;
Lambaki, Sofia ;
Misailidou, Despina ;
Selviaridis, Panagiotis ;
Fountzilas, George .
BMC CANCER, 2012, 12
[8]  
Jakab A, 2012, MANUAL PROVIDING EXP
[9]   A Novel Method for Volumetric MRI Response Assessment of Enhancing Brain Tumors [J].
Kanaly, Charles W. ;
Ding, Dale ;
Mehta, Ankit I. ;
Waller, Anthony F. ;
Crocker, Ian ;
Desjardins, Annick ;
Reardon, David A. ;
Friedman, Allan H. ;
Bigner, Darell D. ;
Sampson, John H. .
PLOS ONE, 2011, 6 (01)
[10]   Imaging descriptors improve the predictive power of survival models for glioblastoma patients [J].
Mazurowski, Maciej Andrzej ;
Desjardins, Annick ;
Malof, Jordan Milton .
NEURO-ONCOLOGY, 2013, 15 (10) :1389-1394