Bioactive bone scaffolds manufactured by 3D printing and sacrificial templating of poly(ε-caprolactone) composites as filler for bone tissue engineering

被引:6
|
作者
Chen, Xiaohong [1 ]
Liu, Yujie [2 ]
Liu, Hang [1 ]
Li, Lei [1 ]
Liu, Yubo [1 ]
Liu, Ping [1 ]
Yang, Xinghai [2 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mat Sci & Engn, Shanghai 200093, Peoples R China
[2] Second Mil Med Univ, Changzheng Hosp, Dept Orthorped Oncol, 415 Fengyang Rd, Shanghai 200003, Peoples R China
基金
中国国家自然科学基金;
关键词
SIMVASTATIN; FABRICATION; IMPACT;
D O I
10.1007/s10853-023-08319-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The structures of a bone scaffold play a role in cell attachment and proliferation. In the present work, a poly(epsilon-caprolactone)/hydroxyapatite/simvastatin (PCL/HA/SIM) composite with a three-dimensional (3D) hierarchical porous structure was successfully fabricated by 3D printing a polyvinyl alcohol (PVA) sacrificial template and a subsequent polymer coating step. The SEM images show that an increase in HA content in the composite significantly decreases the diameter of micropores on the composite surface. The compressive strength measurement results of the composite scaffold show that the strength of the composite scaffold is significantly superior to that of the pure PCL scaffold. Nevertheless, the enhancement of strength in the composite scaffold is not monotonous with more content of HA in the composite as the maximum strength happens for 27.3 wt% of HA. Mouse embryonic fibroblasts (3T3) cells were in vitro cultivated in pure PCL and the composites and demonstrated that more HA content facilitates the proliferation of such cells. Furthermore, an addition of 0.2 wt% of simvastatin (SIM) to the PCL/HA composite scaffold to prepare significantly promoted the proliferation and osteogenic gene expression. The present work shows a potential novel strategy to construct bone tissue engineering scaffolds and cure bone defects.
引用
收藏
页码:5444 / 5455
页数:12
相关论文
共 50 条
  • [41] High performance additive manufactured scaffolds for bone tissue engineering application
    Arafat, M. Tarik
    Lam, Christopher X. F.
    Ekaputra, Andrew K.
    Wong, Siew Yee
    He, Chaobin
    Hutmacher, Dietmar W.
    Li, Xu
    Gibson, Ian
    SOFT MATTER, 2011, 7 (18) : 8013 - 8022
  • [42] 3D-printed photoluminescent bioactive scaffolds with biomimetic elastomeric surface for enhanced bone tissue engineering
    Chen, Mi
    Zhao, Fujian
    Li, Yannan
    Wang, Min
    Chen, Xiaofeng
    Lei, Bo
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 106
  • [43] Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering
    Tarafder, Solaiman
    Balla, Vamsi Krishna
    Davies, Neal M.
    Bandyopadhyay, Amit
    Bose, Susmita
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2013, 7 (08) : 631 - 641
  • [44] Polycaprolactone scaffolds prepared by 3D printing electrosprayed with polyethylene glycol-polycaprolactone block copolymers for applications in bone tissue engineering
    Romero-Araya, Pablo
    Cardenas, Verena
    Nenen, Ariel
    Martinez, Gabriela
    Pavicic, Francisca
    Ehrenfeld, Pamela
    Serandour, Guillaume
    Covarrubias, Cristian
    Neira, Miguel
    Moreno-Villoslada, Ignacio
    Flores, Mario E.
    POLYMER, 2023, 288
  • [45] An in Vitro Evaluation of the Biological Activity of Biogenic Eggshell Derived Nano-Sized Bioglass, Poly (ε-Caprolactone), and Zein Protein 3D Composite Scaffolds for Bone Tissue Engineering
    El-Korashy, Amany Sabry
    El-Shahidy, M. S.
    Badawy, Rania El-Saady
    Habib, Nour Ahmed
    CATRINA-THE INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES, 2024, 30 (01) : 1 - 19
  • [46] 3D Printing of Gelatine/Alginate/β-Tricalcium Phosphate Composite Constructs for Bone Tissue Engineering
    Kalkandelen, Cevriye
    Ulag, Songul
    Ozbek, Burak
    Eroglu, Gunes O.
    Ozerkan, Dilsad
    Kuruca, Serap E.
    Oktar, Faik N.
    Sengor, Mustafa
    Gunduz, Oguzhan
    CHEMISTRYSELECT, 2019, 4 (41): : 12032 - 12036
  • [47] In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering
    Maharjan, Bikendra
    Kaliannagounder, Vignesh Krishnamoorthi
    Jang, Se Rim
    Awasthi, Ganesh Prasad
    Bhattarai, Deval Prasad
    Choukrani, Ghizlane
    Park, Chan Hee
    Kim, Cheol Sang
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 114
  • [48] Synthesis and characterization of photopolymerizable triblocks for 3D printing tissue engineering scaffolds
    Cheng, Yih-Lin
    Hsu, Yi-Jue
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2018, 41 (03) : 259 - 267
  • [49] 3D printed poly(lactic acid)-based nanocomposite scaffolds with bioactive coatings for tissue engineering applications
    Grigora, Maria-Eirini
    Terzopoulou, Zoi
    Baciu, Diana
    Steriotis, Theodore
    Charalambopoulou, Georgia
    Gounari, Eleni
    Bikiaris, Dimitrios N.
    Tzetzis, Dimitrios
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (06) : 2740 - 2763
  • [50] PHYSICAL AND MECHANICAL PROPERTIES OF POLY(E-CAPROLACTONE) - HYDROXYAPATITE COMPOSITES FOR BONE TISSUE ENGINEERING APPLICATIONS
    Leung, Linus H.
    DiRosa, Amanda
    Naguib, Hani E.
    IMECE2009: PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, VOL 2, 2010, : 17 - 23