Nanopore-Based Fingerprint Immunoassay Based on Rolling Circle Amplification and DNA Fragmentation

被引:22
作者
Kang, Xinqi [1 ]
Wu, Connie [2 ,3 ,4 ]
Alibakhshi, Mohammad Amin [5 ]
Liu, Xingyan [1 ]
Yu, Luning [5 ]
Walt, David R. [2 ,3 ]
Wanunu, Meni [1 ,6 ]
机构
[1] Northeastern Univ, Dept Bioengn, Boston, MA 02115 USA
[2] Harvard Univ, Brigham & Womens Hosp, Harvard Med Sch, Dept Pathol, Boston, MA 02115 USA
[3] Harvard Univ, Wyss Inst Biolog Inspired Engn, Boston, MA 02115 USA
[4] Univ Michigan, Life Sci Inst, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[5] Northeastern Univ, Phys, Boston, MA 02115 USA
[6] Northeastern Univ, Phys Chem & Chem Biol, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
DNA hairpin; -hemolysin; stable polymer bilayer; biosensing; biomarker; rolling circle amplification; STRANDED-DNA; SINGLE; PROTEIN; TRANSLOCATION; MOLECULES; BINDING; CHANNEL; PORIN;
D O I
10.1021/acsnano.2c09889
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In recent years, nanopore-based sequencers have become robust tools with unique advantages for genomics applications. However, progress toward applying nanopores as highly sensitive, quantitative diagnostic tools has been impeded by several challenges. One major limitation is the insufficient sensitivity of nanopores in detecting disease biomarkers, which are typically present at pM or lower concentrations in biological fluids, while a second limitation is the general absence of unique nanopore signals for different analytes. To bridge this gap, we have developed a strategy for nanopore-based biomarker detection that utilizes immunocapture, isothermal rolling circle amplification, and sequence-specific fragmentation of the product to release multiple DNA reporter molecules for nanopore detection. These DNA fragment reporters produce sets of nanopore signals that form distinctive fingerprints, or clusters. This fingerprint signature therefore allows the identification and quantification of biomarker analytes. As a proof of concept, we quantify human epididymis protein 4 (HE4) at low pM levels in a few hours. Future improvement of this method by integration with a nanopore array and microfluidicsbased chemistry can further reduce the limit of detection, allow multiplexed biomarker detection, and further reduce the footprint and cost of existing laboratory and point-of-care devices.
引用
收藏
页码:5412 / 5420
页数:9
相关论文
共 41 条
  • [1] The emerging landscape of single-molecule protein sequencing technologies
    Alfaro, Javier Antonio
    Bohlander, Peggy
    Dai, Mingjie
    Filius, Mike
    Howard, Cecil J.
    van Kooten, Xander F.
    Ohayon, Shilo
    Pomorski, Adam
    Schmid, Sonja
    Aksimentiev, Aleksei
    Anslyn, Eric V.
    Bedran, Georges
    Cao, Chan
    Chinappi, Mauro
    Coyaud, Etienne
    Dekker, Cees
    Dittmar, Gunnar
    Drachman, Nicholas
    Eelkema, Rienk
    Goodlett, David
    Hentz, Sebastien
    Kalathiya, Umesh
    Kelleher, Neil L.
    Kelly, Ryan T.
    Kelman, Zvi
    Kim, Sung Hyun
    Kuster, Bernhard
    Rodriguez-Larrea, David
    Lindsay, Stuart
    Maglia, Giovanni
    Marcotte, Edward M.
    Marino, John P.
    Masselon, Christophe
    Mayer, Michael
    Samaras, Patroklos
    Sarthak, Kumar
    Sepiashvili, Lusia
    Stein, Derek
    Wanunu, Meni
    Wilhelm, Mathias
    Yin, Peng
    Meller, Amit
    Joo, Chirlmin
    [J]. NATURE METHODS, 2021, 18 (06) : 604 - 617
  • [2] Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine
    Ali, M. Monsur
    Li, Feng
    Zhang, Zhiqing
    Zhang, Kaixiang
    Kang, Dong-Ku
    Ankrum, James A.
    Le, X. Chris
    Zhao, Weian
    [J]. CHEMICAL SOCIETY REVIEWS, 2014, 43 (10) : 3324 - 3341
  • [3] Aw JGA, 2021, NAT BIOTECHNOL, V39, P336, DOI 10.1038/s41587-020-0712-z
  • [4] Nanopore blockade sensors for ultrasensitive detection of proteins in complex biological samples
    Chuah, Kyloon
    Wu, Yanfang
    Vivekchand, S. R. C.
    Gaus, Katharina
    Reece, Peter J.
    Micolich, Adam P.
    Gooding, J. Justin
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [5] Disruption of the open conductance in the β-tongue mutants of Cytolysin A
    Fahie, Monifa A.
    Liang, Lucas
    Avelino, Alzira R.
    Pham, Bach
    Limpikirati, Patanachai
    Vachet, Richard W.
    Chen, Min
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [6] Back and forth with nanopore peptide sequencing
    Ferruz, Noelia
    Hoecker, Birte
    [J]. NATURE BIOTECHNOLOGY, 2022, 40 (02) : 172 - 173
  • [7] Large-Conductance Transmembrane Porin Made from DNA Origami
    Gopfrich, Kerstin
    Li, Chen-Yu
    Ricci, Maria
    Bhamidimarri, Satya Prathyusha
    Yoo, Jejoong
    Gyenes, Bertalan
    Ohmann, Alexander
    Winterhalter, Mathias
    Aksimentiev, Aleksei
    Keyser, Ulrich F.
    [J]. ACS NANO, 2016, 10 (09) : 8207 - 8214
  • [8] Single-Molecule Protein Phosphorylation and Dephosphorylation by Nano ore Enzymology
    Harrington, Leon
    Alexander, Leila T.
    Knapp, Stefan
    Bayley, Hagan
    [J]. ACS NANO, 2019, 13 (01) : 633 - 641
  • [9] Digital immunoassay for biomarker concentration quantification using solid-state nanopores
    He, Liqun
    Tessier, Daniel R.
    Briggs, Kyle
    Tsangaris, Matthaios
    Charron, Martin
    McConnell, Erin M.
    Lomovtsev, Dmytro
    Tabard-Cossa, Vincent
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] DNA origami nanopores: developments, challenges and perspectives
    Hernandez-Ainsa, Silvia
    Keyser, Ulrich F.
    [J]. NANOSCALE, 2014, 6 (23) : 14121 - 14132