Weighted residual self-attention graph-based transformer for spectral-spatial hyperspectral image classification

被引:3
|
作者
Zu, Baokai [1 ]
Wang, Hongyuan [1 ]
Li, Jianqiang [1 ]
He, Ziping [2 ,3 ]
Li, Yafang [1 ]
Yin, Zhixian [2 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin, Peoples R China
[3] Helmholtz Zentrum Dresden Rossendorf, Helmholtz Inst Freiberg Resource Technol, Freiberg, Germany
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Hyperspectral image classification; transformer; Weighted Residual Self-attention Graph-based Transformer; deep learning; FEATURE FUSION; NETWORKS;
D O I
10.1080/01431161.2023.2171744
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Recently, deep learning for hyperspectral image classification has been successfully applied, and some convolutional neural network (CNN)-based models already achieved attractive classification results. Since hyperspectral data is a spectral-spatial cube data that can generally be considered as sequential data along with the spectral dimension, CNN models perform poorly on such a sequential data. Unlike convolutional neural networks (CNNs) that mainly concern with local relationship models in images, transformer has been shown to be a powerful structure for qualifying sequential data. In the SA (self-attention) module of ViT, each token is updated through aggregating all token's features based on the self-attention graph. Through this, tokens can exchange information sufficiently among each other which provides a powerful representation capability. However, as the layers become deeper, the transformer model suffers from network degradation. Therefore, in order to improve the layer-to-layer information exchange and alleviate the network degradation problem, we propose a Weighted Residual Self-attention Graph-based Transformer (RSAGformer) model for hyperspectral image classification with respect to the self-attention mechanism. It effectively solves the network degradation problem of deep transformer model by fusing the self-attention information between adjacent layers and extracts the information of data effectively. Extensive experiment evaluation with six public hyperspectral datasets shows that the RSAGformer yields competitive results for classification.
引用
收藏
页码:852 / 877
页数:26
相关论文
共 50 条
  • [21] Spectral-Spatial Attention Network for Hyperspectral Image Classification
    Sun, Hao
    Zheng, Xiangtao
    Lu, Xiaoqiang
    Wu, Siyuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3232 - 3245
  • [22] Hyperspectral Image Classification Based on 3-D Multihead Self-Attention Spectral-Spatial Feature Fusion Network
    Zhou, Qigao
    Zhou, Shuai
    Shen, Feng
    Yin, Juan
    Xu, Dingjie
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 1072 - 1084
  • [23] SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGE BASED ON A JOINT ATTENTION NETWORK
    Pan, Erting
    Ma, Yong
    Mei, Xiaoguang
    Dai, Xiaobing
    Fan, Fan
    Tian, Xin
    Ma, Jiayi
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 413 - 416
  • [24] Hyperspectral Image Classification Based on Spectral-Spatial Attention Tensor Network
    Zhang, Wei-Tao
    Li, Yi-Bang
    Liu, Lu
    Bai, Yv
    Cui, Jian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [25] Spectral-Spatial Adaptive Weighted Fusion and Residual Dense Network for hyperspectral image classification
    Sun, Junding
    Zhang, Hongyuan
    Ma, Xiaoxiao
    Wang, Ruinan
    Sima, Haifeng
    Wang, Jianlong
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2025, 28 (01): : 21 - 33
  • [26] A Spectral-Spatial Fusion Transformer Network for Hyperspectral Image Classification
    Liao, Diling
    Shi, Cuiping
    Wang, Liguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [27] MultiScale spectral-spatial convolutional transformer for hyperspectral image classification
    Gong, Zhiqiang
    Zhou, Xian
    Yao, Wen
    IET IMAGE PROCESSING, 2024, 18 (13) : 4328 - 4340
  • [28] DISCRIMINATIVE SPECTRAL-SPATIAL ATTENTION-AWARE RESIDUAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Cai, Yaoming
    Dong, Zhimin
    Cai, Zhihua
    Liu, Xiaobo
    Wang, Guangjun
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [29] WaveFormer: Spectral-Spatial Wavelet Transformer for Hyperspectral Image Classification
    Ahmad, Muhammad
    Ghous, Usman
    Usama, Muhammad
    Mazzara, Manuel
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [30] Semi-Supervised Hyperspectral Image Classification Based on Multiscale Spectral-Spatial Graph Attention Network
    Han, Xizhen
    Jiang, Zhengang
    Liu, Yuanyuan
    Zhao, Jian
    Sun, Qiang
    Liu, Jianzhuo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5