A novel deep transfer learning method with inter-domain decision discrepancy minimization for intelligent fault diagnosis

被引:21
|
作者
Su, Zhiheng [1 ]
Zhang, Jiyang [1 ]
Tang, Jianxiong [1 ]
Wang, Yuxuan [1 ]
Xu, Hongbing [1 ]
Zou, Jianxiao [1 ,2 ]
Fan, Shicai [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Automat Engn, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen 518110, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent fault diagnosis; Deep learning; Transfer learning; Decision discrepancy; MACHINERY;
D O I
10.1016/j.knosys.2022.110065
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The application of traditional deep learning methods for intelligent fault diagnosis is limited by the distribution discrepancy of the unlabeled data collected under different working conditions. Transfer learning can break through this limitation by generalizing a model trained on the source domain with massive labeled data to solve the fault diagnosis problem in the target domain with unlabeled data. The current transfer learning methods focus on directly measuring and minimizing the distribution discrepancy of the features between the two domains. These methods may confront difficulties when the distributions between the domains are complex and heterogeneous, and may cause the incorrect alignment of the same class data with the greatest distribution discrepancy across the two domains. In this paper, a deep transfer learning method with inter-domain decision discrepancy minimization (InDo-DDM) is proposed. The proposed method directly measures and minimizes the discrepancy of the decision result matrixes to facilitate the minimization of the distribution discrepancy between the two-domain data. With the proposed domain indicator, the InDo-DDM can find the greatest decision discrepancy and better align the data with the greatest distribution discrepancy. Additionally, the measurement of the decision discrepancy can be more precise and robust by introducing the nuclear-norm to avoid the fallible data classification near the decision boundary caused by the intra-batch imbalance. Extensive experiments in three different scenarios with two datasets from Case Western Reserve University (CWRU) and one dataset from Prognostic and Health Management (PHM) Data Challenge revealed that the InDo-DDM outperformed the other widely used methods. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] An Intelligent Machinery Fault Diagnosis Method Based on GAN and Transfer Learning under Variable Working Conditions
    He, Wangpeng
    Chen, Jing
    Zhou, Yue
    Liu, Xuan
    Chen, Binqiang
    Guo, Baolong
    SENSORS, 2022, 22 (23)
  • [42] Asymmetric inter-intra domain alignments (AIIDA) method for intelligent fault diagnosis of rotating machinery
    Lee, Jinwook
    Kim, Myungyon
    Ko, Jin Uk
    Ha Jung, Joon
    Sun, Kyung Ho
    Youn, Byeng D.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 218
  • [43] Mechanical fault diagnosis based on deep transfer learning: a review
    Yang, Dalian
    Zhang, Wenbin
    Jiang, Yongzheng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [44] A New Deep Transfer Learning Method for Bearing Fault Diagnosis Under Different Working Conditions
    Zhu, Jun
    Chen, Nan
    Shen, Changqing
    IEEE SENSORS JOURNAL, 2020, 20 (15) : 8394 - 8402
  • [45] Collaborative and adversarial deep transfer auto-encoder for intelligent fault diagnosis
    Ma, Yulin
    Yang, Jun
    Li, Lei
    NEUROCOMPUTING, 2022, 486 : 1 - 15
  • [46] Deep convolution domain-adversarial transfer learning for fault diagnosis of rolling bearings
    Li, Feng
    Tang, Tuojiang
    Tang, Baoping
    He, Qiyuan
    MEASUREMENT, 2021, 169
  • [47] Towards Prediction Constraints: A Novel Domain Adaptation Method for Machine Fault Diagnosis
    Jiao, Jinyang
    Liang, Kaixuan
    Ding, Chuancang
    Lin, Jing
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (10) : 7198 - 7207
  • [48] A novel bearing intelligent fault diagnosis method based on spectrum sparse deep deconvolution
    Shi, Huifang
    Miao, Yonghao
    Li, Chenhui
    Gu, Xiaohui
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [49] Bearing fault diagnosis with intermediate domain based Layered Maximum Mean Discrepancy: A new transfer learning approach
    Schwendemann, Sebastian
    Amjad, Zubair
    Sikora, Axel
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 105
  • [50] Deep Ensemble-Based Classifier for Transfer Learning in Rotating Machinery Fault Diagnosis
    Pacheco, Fannia
    Drimus, Alin
    Duggen, Lars
    Cerrada, Mariela
    Cabrera, Diego
    Sanchez, Rene-Vinicio
    IEEE ACCESS, 2022, 10 : 29778 - 29787