g-fractional diffusion models in bounded domains

被引:6
作者
Angelani, L. [1 ,2 ]
Garra, R. [3 ]
机构
[1] ISC CNR Inst Complex Syst, Piazzale A Moro 2, I-00185 Rome, Italy
[2] Sapienza Univ Roma, Dipartimento Fis, Piazzale A Moro 2, I-00185 Rome, Italy
[3] Natl Res Council CNR, Inst Marine Sci, Via Fosso Cavaliere, I-00133 Rome, Italy
关键词
Differentiation (calculus) - Diffusion - Partial differential equations;
D O I
10.1103/PhysRevE.107.014127
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the recent literature, the g-subdiffusion equation involving Caputo fractional derivatives with respect to another function has been studied in relation to anomalous diffusions with a continuous transition between different subdiffusive regimes. In this paper we study the problem of g-fractional diffusion in a bounded domain with absorbing boundaries. We find the explicit solution for the initial boundary value problem, and we study the first-passage time distribution and the mean first-passage time (MFPT). The main outcome is the proof that with a particular choice of the function g it is possible to obtain a finite MFPT, differently from the anomalous diffusion described by a fractional heat equation involving the classical Caputo derivative.
引用
收藏
页数:6
相关论文
共 17 条
[1]   Solution for a fractional diffusion-wave equation defined in a bounded domain [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :145-155
[2]   On fractional Cattaneo equation with partially reflecting boundaries [J].
Angelani, L. ;
Garra, R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (08)
[3]   Iterated elastic Brownian motions and fractional diffusion equations [J].
Beghin, Luisa ;
Orsingher, Enzo .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (06) :1975-2003
[4]   Properties of the Mittag-Leffler relaxation function [J].
Berberan-Santos, MN .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 38 (04) :629-635
[5]  
Sousa JVD, 2021, MEDITERR J MATH, V18, DOI 10.1007/s00009-021-01789-3
[6]   Hadamard-Type Fractional Heat Equations and Ultra-Slow Diffusions [J].
De Gregorio, Alessandro ;
Garra, Roberto .
FRACTAL AND FRACTIONAL, 2021, 5 (02)
[7]   Time-fractional diffusion equation with time dependent diffusion coefficient [J].
Fa, KS ;
Lenzi, EK .
PHYSICAL REVIEW E, 2005, 72 (01)
[8]   The fractional Dodson diffusion equation: a new approach [J].
Garra, Roberto ;
Giusti, Andrea ;
Mainardi, Francesco .
RICERCHE DI MATEMATICA, 2018, 67 (02) :899-909
[9]   Reply to "Comment on 'Mean first passage time for anomalous diffusion.' " [J].
Gitterman, M .
PHYSICAL REVIEW E, 2004, 69 (03)
[10]  
Gorenflo R., 2020, Mittag-Leffler Functions, Related Topics and Applications, DOI DOI 10.1007/978-3-662-43930-2