PANDORA: Deep Graph Learning Based COVID-19 Infection Risk Level Forecasting

被引:2
|
作者
Yu, Shuo [1 ]
Xia, Feng [2 ]
Wang, Yueru [3 ]
Li, Shihao [4 ]
Febrinanto, Falih Gozi [5 ]
Chetty, Madhu [5 ]
机构
[1] Dalian Univ Technol, Sch Comp Sci & Technol, Dalian 116024, Peoples R China
[2] RMIT Univ, Sch Comp Technol, Melbourne, Vic 3000, Australia
[3] Natl Tsing Hua Univ, Dept Math, Hsinchu 30013, Taiwan
[4] Dalian Univ Technol, Sch Software, Dalian 116620, Peoples R China
[5] Federat Univ Australia, Inst Innovat Sci & Sustainabil, Ballarat, Vic 3353, Australia
基金
中国国家自然科学基金;
关键词
COVID-19; Forecasting; Pandemics; Transportation; Task analysis; Economics; Predictive models; Coronavirus disease 2019 (COVID-19); deep graph learning; forecasting; infection risk; network motif; HUMAN MOBILITY; CONSEQUENCES;
D O I
10.1109/TCSS.2022.3229671
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Coronavirus disease 2019 (COVID-19) as a global pandemic causes a massive disruption to social stability that threatens human life and the economy. An effective forecasting system is arguably important to provide an early signal of the risk of COVID-19 infection so that the authorities are ready to protect the people from the worst. However, making a good forecasting model for infection risks in different cities or regions is not an easy task, because it has a lot of influential factors that are difficult to be identified manually. To address the current limitations, we propose a deep graph learning model, called PANDORA, to predict the infection risks of COVID-19, by considering all essential factors and integrating them into a geographical network. The framework uses geographical position relationships and transportation frequency as higher order structural properties formulated by higher order network structures (i.e., network motifs). Moreover, four significant node attributes (i.e., multiple features of a particular area, including climate, medical condition, economy, and human mobility) are also considered. We propose three different aggregators to better aggregate node attributes and structural features, namely, Hadamard, Summation, and Connection. Experimental results over real data show that PANDORA outperforms the baseline methods with higher accuracy and faster convergence speed, no matter which aggregator is chosen.
引用
收藏
页码:717 / 730
页数:14
相关论文
共 50 条
  • [41] A review on COVID-19 forecasting models
    Rahimi, Iman
    Chen, Fang
    Gandomi, Amir H.
    NEURAL COMPUTING & APPLICATIONS, 2021, 35 (33) : 23671 - 23681
  • [42] The risk of COVID-19 infection among nurses working with COVID-19 patients
    Alrabadi, Nasr
    Al-faouri, Ibrahim
    Hadad, Razan
    Al-rabadi, Daher
    Alnsour, Ayham
    Alzoubi, Osama
    Obeidat, Omar
    Alzoubi, Karem H.
    MEDICINE, 2023, 102 (49) : E36201
  • [43] Machine Learning and Deep Learning Based Time Series Prediction and Forecasting of Ten Nations’ COVID-19 Pandemic
    Kumar Y.
    Koul A.
    Kaur S.
    Hu Y.-C.
    SN Computer Science, 4 (1)
  • [44] Deep transfer learning for COVID-19 detection and infection localization with superpixel based segmentation
    Prakash, N. B.
    Murugappan, M.
    Hemalakshmi, G. R.
    Jayalakshmi, M.
    Mahmud, Mufti
    SUSTAINABLE CITIES AND SOCIETY, 2021, 75
  • [45] A review on COVID-19 forecasting models
    Iman Rahimi
    Fang Chen
    Amir H. Gandomi
    Neural Computing and Applications, 2023, 35 : 23671 - 23681
  • [46] Using Traffic Sensors in Smart Cities to Enhance a Spatio-Temporal Deep Learning Model for COVID-19 Forecasting
    Munoz-Organero, Mario
    MATHEMATICS, 2023, 11 (18)
  • [47] Time series forecasting of Covid-19 using deep learning models: India-USA comparative case study
    Shastri, Sourabh
    Singh, Kuljeet
    Kumar, Sachin
    Kour, Paramjit
    Mansotra, Vibhakar
    CHAOS SOLITONS & FRACTALS, 2020, 140
  • [48] A deep learning-based approach for predicting COVID-19 diagnosis
    Munshi, Raafat M.
    Khayyat, Mashael M.
    Ben Slama, Sami
    Khayyat, Manal Mahmoud
    HELIYON, 2024, 10 (07)
  • [49] A Deep Learning technology based covid-19 prediction
    Chaitanya, A. Krishna
    Ghadiyaram, Likhitha
    Yoshitha, Puvvala
    Sai, D. Nikhil Vishnu
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 490 - 495
  • [50] Forecasting efforts from prior epidemics and COVID-19 predictions
    Pranay Nadella
    Akshay Swaminathan
    S. V. Subramanian
    European Journal of Epidemiology, 2020, 35 : 727 - 729