Feasibility of Early Yield Prediction per Coffee Tree Based on Multispectral Aerial Imagery: Case of Arabica Coffee Crops in Cauca-Colombia

被引:4
作者
Bolanos, Julian [1 ]
Carlos Corrales, Juan [1 ]
Viviana Campo, Liseth [1 ]
机构
[1] Univ Cauca, Telematics Engn Grp, St 5 4-70, Popayan 190003, Colombia
关键词
crop yield; coffee; image segmentation; multispectral; MapIR; predictor; UAV; COEFFICIENT; MODEL;
D O I
10.3390/rs15010282
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Crop yield is an important factor for evaluating production processes and determining the profitability of growing coffee. Frequently, the total number of coffee beans per area unit is estimated manually by physically counting the coffee cherries, the branches, or the flowers. However, estimating yield requires an investment in time and work, so it is not usual for small producers. This paper studies a non-intrusive and attainable alternative to predicting coffee crop yield through multispectral aerial images. The proposal is designed for small low-tech producers monitored by capturing aerial photos with a MapIR camera on an unmanned aerial vehicle. This research shows how to predict yields in the early stages of the coffee tree productive cycle, such as at flowering by using aerial imagery. Physical and spectral descriptors were evaluated as predictors for yield prediction models. The results showed correlations between the selected predictors and 370 yield samples of a Colombian Arabica coffee crop. The coffee tree volume, the Normalized Difference Vegetation Index (NDVI), and the Coffee Ripeness Index (CRI) showed the highest values with 71%, 55%, and 63%, respectively. Further, these predictors were used as the inputs for regression models to analyze their precision in predicting coffee crop yield. The validation stage concluded that Linear Regression and Stochastic Descending Gradient Regression were better models with determination coefficient values of 56% and 55%, respectively, which are promising for predicting yield.
引用
收藏
页数:18
相关论文
共 37 条
  • [21] Mathematical model for predicting coffee yield
    Miranda, Jose M.
    Reinato, Rosicler A. O.
    da Silva, Adriano B.
    [J]. REVISTA BRASILEIRA DE ENGENHARIA AGRICOLA E AMBIENTAL, 2014, 18 (04): : 353 - 361
  • [22] Molina G., MODELO REGRESION LIN
  • [23] Montoya-Restrepo E., 2009, B TECNICO
  • [24] Munoz C.A.U., 2017, CENICAF, V68, P62
  • [25] Ordonez A., SULTANA FARM
  • [26] CORRELATION AND THE COEFFICIENT OF DETERMINATION
    OZER, DJ
    [J]. PSYCHOLOGICAL BULLETIN, 1985, 97 (02) : 307 - 315
  • [27] Parreiras Taya Cristo, 2020, Coffee Science, V15, DOI 10.25186/.v15i.1736
  • [28] Picini A. G., 1999, Bragantia, V58, P157, DOI 10.1590/S0006-87051999000100015
  • [29] Ramirez V., 2014, FENOLOGIA CAFE HERRA
  • [30] Rendon J., ESTIMACION PRODUCCIO