CMFCUNet: cascaded multi-scale feature calibration UNet for pancreas segmentation

被引:11
|
作者
Qiu, Chengjian [1 ]
Song, Yuqing [1 ]
Liu, Zhe [1 ]
Yin, Jing [1 ]
Han, Kai [1 ]
Liu, Yi [1 ]
机构
[1] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Pancreas segmentation; Coarse-to-fine approaches; Multi-scale feature calibration; Convolutional neural networks; CT; ATTENTION; IMAGES; NET;
D O I
10.1007/s00530-022-01020-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Segmenting the pancreas from abdominal CT scans is challenging since it often takes up a relatively small region. Researchers suggested leveraging coarse-to-fine approaches to cope with this challenge. However, the coarse-scaled segmentation and the fine-scaled segmentation are either trained separately utilizing the coordinates located by the coarse-scaled segmentation mask to crop the fine-scaled segmentation input, or trained jointly utilizing the coarse-scaled segmentation mask to enhance the fine-scaled segmentation input. We argued that these two solutions are complementary to some extent and can promote each other to improve the performance of pancreas segmentation. In addition, the backbone in the coarse-scaled segmentation and fine-scaled segmentation is mostly based on UNet or UNet-like networks, where the multi-scale features transmitted from the encoder to the decoder have not been explored for vertical calibration before. In this paper, we propose a cascaded multi-scale feature calibration UNet (CMFCUNet) for pancreas segmentation where the multi-scale features in the backbone of each scaled segmentation are calibrated vertically in a pixel-wise fashion. Besides, the coarse-scaled segmentation and the fine-scaled segmentation are connected by leveraging a designed dual enhancement module (DEM). Experiments are first conducted on the public NIH pancreas dataset. First, when leveraging CMFCUNet, our method increased by over 3% on the Jaccard index (JI) and nearly 1% on dice similarity coefficient (DSC) which surpasses all existing pancreas segmentation approaches. In addition, our experiments demonstrate that CMFCUNet improved the coarse-to-fine segmentation framework and outperformed the mainstream coarse-to-fine pancreas segmentation approaches. Furthermore, we also conducted ablation studies to analyze the effectiveness of the backbone (MFCUNet) and the DEM. In addition to the experiments on the NIH dataset, we also experimentally demonstrate the excellent generalization of our method on the MSD pancreas dataset.
引用
收藏
页码:871 / 886
页数:16
相关论文
共 50 条
  • [1] CMFCUNet: cascaded multi-scale feature calibration UNet for pancreas segmentation
    Chengjian Qiu
    Yuqing Song
    Zhe Liu
    Jing Yin
    Kai Han
    Yi Liu
    Multimedia Systems, 2023, 29 : 871 - 886
  • [2] Deep multi-scale feature fusion for pancreas segmentation from CT images
    Zhanlan Chen
    Xiuying Wang
    Ke Yan
    Jiangbin Zheng
    International Journal of Computer Assisted Radiology and Surgery, 2020, 15 : 415 - 423
  • [3] Deep multi-scale feature fusion for pancreas segmentation from CT images
    Chen, Zhanlan
    Wang, Xiuying
    Yan, Ke
    Zheng, Jiangbin
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2020, 15 (03) : 415 - 423
  • [4] CMP-UNet: A Retinal Vessel Segmentation Network Based on Multi-Scale Feature Fusion
    Gu, Yanan
    Cao, Ruyi
    Wang, Dong
    Lu, Bibo
    ELECTRONICS, 2023, 12 (23)
  • [5] Pancreas segmentation by two-view feature learning and multi-scale supervision
    Chen, Haipeng
    Liu, Yunjie
    Shi, Zenan
    Lyu, Yingda
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 74
  • [6] MFA-UNet: a vessel segmentation method based on multi-scale feature fusion and attention module
    Cao, Juan
    Chen, Jiaran
    Gu, Yuanyuan
    Liu, Jinjia
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [7] MFLUnet: multi-scale fusion lightweight Unet for medical image segmentation
    Cao, Dianlei
    Zhang, Rui
    Zhang, Yunfeng
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (10): : 5574 - 5591
  • [8] MH UNet: A Multi-Scale Hierarchical Based Architecture for Medical Image Segmentation
    Ahmad, Parvez
    Jin, Hai
    Alroobaea, Roobaea
    Qamar, Saqib
    Zheng, Ran
    Alnajjar, Fady
    Aboudi, Fathia
    IEEE ACCESS, 2021, 9 : 148384 - 148408
  • [9] Medical image segmentation with UNet-based multi-scale context fusion
    Yuan, Yongqi
    Cheng, Yong
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [10] Parallel multi-scale network with attention mechanism for pancreas segmentation
    Long, Jianwu
    Song, Xinlei
    An, Yong
    Li, Tong
    Zhu, Jiangzhou
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (01) : 110 - 119