Time periodic motion of temperature driven compressible fluids

被引:1
|
作者
Feireisl, Eduard [1 ]
Gwiazda, Piotr [2 ]
Swierczewska-Gwiazda, Agnieszka [3 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Zitna 25, Prague 11567 1, Czech Republic
[2] Polish Acad Sci, Inst Math, Sniadeckich 8, PL-00956 Warsaw, Poland
[3] Univ Warsaw, Inst Appl Math & Mech, Banacha 2, PL-02097 Warsaw, Poland
关键词
NAVIER-STOKES EQUATIONS; 3RD LAW; EXISTENCE; STABILITY; THERMODYNAMICS; SYSTEM;
D O I
10.1007/s00208-022-02489-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Navier-Stokes-Fourier system describing the motion of a compressible viscous fluid in a container with impermeable boundary subject to time periodic heating and under the action of a time periodic potential force. We show the existence of a time periodic weak solution for arbitrarily large physically admissible data.
引用
收藏
页码:1603 / 1627
页数:25
相关论文
共 50 条
  • [31] Large-time behaviour of solutions to a class of non-Newtonian compressible fluids
    Guo, Shanshan
    Tan, Zhong
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (03):
  • [32] TIME PERIODIC SOLUTIONS TO THE 3D COMPRESSIBLE FLUID MODELS OF KORTEWEG TYPE
    Tan, Zhong
    Xu, Qiuju
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (03) : 705 - 733
  • [33] Dispersive effect and global well-posedness of the compressible viscoelastic fluids
    Han, Bin
    Zi, Ruizhao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9254 - 9296
  • [34] Well-posedness and time-decay for compressible viscoelastic fluids in critical Besov space
    Jia, Junxiong
    Peng, Jigen
    Mei, Zhandong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (02) : 638 - 675
  • [35] Time periodic and almost time periodic solutions to rotating stratified fluids subject to large forces
    Hieber, Matthias
    Mahalov, Alex
    Takada, Ryo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (2-3) : 977 - 1002
  • [36] Asymptotic Stability of Steady Compressible Fluids Preface
    Padula, Mariarosaria
    ASYMPTOTIC STABILITY OF STEADY COMPRESSIBLE FLUIDS, 2011, 2024 : VII - +
  • [37] GENERALIZED SOLUTIONS TO MODELS OF COMPRESSIBLE VISCOUS FLUIDS
    Abbatiello, Anna
    Feireisl, Eduard
    Novotny, Antoni
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (01) : 1 - 28
  • [38] Multiple-relaxation-time lattice Boltzmann model for compressible fluids
    Chen, Feng
    Xu, Aiguo
    Zhang, Guangcai
    Li, Yingjun
    PHYSICS LETTERS A, 2011, 375 (21) : 2129 - 2139
  • [39] Asymptotic Stability for One-dimensional Motion of Non-Newtonian Compressible Fluids
    Shi, Xiao-ding
    Wang, Teng
    Zhang, Zhen
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (01): : 99 - 110
  • [40] Decay estimates of solutions to the compressible micropolar fluids system in R3
    Tong, Leilei
    Pan, Ronghua
    Tan, Zhong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 293 : 520 - 552