Spatial decay of multi-solitons of the generalized Korteweg-de Vries and nonlinear Schrodinger equations

被引:0
|
作者
Cote, Raphael [1 ]
Friederich, Xavier [1 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee UMR 7501, Strasbourg, France
关键词
Primary; 35B40; 35Q53; 35Q55; Secondary; 35B65; 37K40; MULTISOLITON SOLUTIONS; DEVRIES EQUATION; GKDV; CONSTRUCTION;
D O I
10.1007/s00208-022-02484-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study pointwise spatial decay of multi-solitons of the generalized Korteweg-de Vries equations. We obtain that, uniformly in time, these solutions and their derivatives decay exponentially in space on the left of and in the solitons region, and prove rapid decay on the right of the solitons. We also prove the corresponding result for multi-solitons of the nonlinear Schrodinger equations, that is, exponential decay in the solitons region and rapid decay outside.
引用
收藏
页码:1163 / 1198
页数:36
相关论文
共 50 条
  • [41] Some mathematical aspects of the correspondence between the generalized nonlinear Schrodinger equation and the generalized Korteweg-de Vries equation
    Fedele, Renato
    De Nicola, Sergio
    Grecu, Dan
    Visinescu, Anca
    Shukla, Padma K.
    NEW DEVELOPMENTS IN NONLINEAR PLASMA PHYSICS, 2009, 1188 : 365 - +
  • [42] Decay of solitary waves of fractional Korteweg-de Vries type equations
    Eychenne, Arnaud
    Valet, Frederic
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 363 : 243 - 274
  • [43] Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation
    Wang, Pan
    Tian, Bo
    Liu, Wen-Jun
    Jiang, Yan
    Xue, Yue-Shan
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (09):
  • [44] Bright and dark solitons for a generalized Korteweg-de Vries-modified Korteweg-de Vries equation with high-order nonlinear terms and time-dependent coefficients
    Triki, Houria
    Wazwaz, Abdul-Majid
    CANADIAN JOURNAL OF PHYSICS, 2011, 89 (03) : 253 - 259
  • [45] The functional variable method for solving the fractional Korteweg-de Vries equations and the coupled Korteweg-de Vries equations
    Matinfar, M.
    Eslami, M.
    Kordy, M.
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (04): : 583 - 592
  • [46] Provable bounds for the Korteweg-de Vries reduction in multi-component nonlinear Schrodinger equation
    Swarup, Swetlana
    Vasan, Vishal
    Kulkarni, Manas
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (13)
  • [47] Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation
    Pan Wang
    Bo Tian
    Wen-Jun Liu
    Yan Jiang
    Yue-Shan Xue
    The European Physical Journal D, 2012, 66
  • [48] Solitons with periodic behavior in Korteweg-de Vries type models related to Schrodinger system
    Zheng, CL
    Zhang, JF
    Xu, CZ
    Chen, LQ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 43 (05) : 850 - 854
  • [49] Solitons with Periodic Behavior in Korteweg-de Vries Type Models Related to Schrodinger System
    ZHENG Chun-Long
    ZHANG Jie-Fang
    XU Chang-Zhi
    CHEN Li-Qun Department of Physics
    Communications in Theoretical Physics, 2005, 43 (05) : 850 - 854
  • [50] Gevrey regularizing effect for the (generalized) Korteweg-de Vries equation and nonlinear Schrödinger equations
    C.N.R.S., Université de Paris-Sud, Mathématique, Bâtiment 425, Orsay
    91405, France
    不详
    376, Japan
    不详
    560, Japan
    Anna Inst Henri Poincare Anal. Non Lineaire, 6 (673-725):