Matching a discrete distribution by Poisson matching quantiles estimation

被引:0
作者
Lim, Hyungjun [1 ]
Kim, Arlene K. H. [1 ]
机构
[1] Korea Univ, Dept Stat, 145 Anam Ro, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Matching distributions; PMQE; discrete variable; unpaired data analysis; deviance; SAMPLE QUANTILES; REGRESSION;
D O I
10.1080/02664763.2024.2337082
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Analyzing the data collected from different sources requires unpaired data analysis to account for the absence of correspondence between the random variable Y and the covariates $ \boldsymbol {X} $ X. Several attempts have been made to analyze continuous Y, but it may follow a discrete distribution, which previous methodologies have overlooked. To address these limitations, we propose Poisson matching quantiles estimation (PMQE), the first unpaired data analysis method designed to examine the discrete Y and the unpaired continuous covariates $ \boldsymbol{X} $ X. Using their order statistics, the PMQE method matches the linear combination of random variables $ \boldsymbol{\beta} <^>{T} \boldsymbol{X} $ beta TX to $ {\rm log}(Y) $ log(Y). We further improve the performance of the proposed method by $ \ell _1 $ l1 penalizing $ \boldsymbol{\beta} $ beta, leading to the PMQE LASSO. An effective algorithm and simulation results are presented, along with the convergence results. We illustrate the practical application of PMQE using real data.
引用
收藏
页码:3102 / 3124
页数:23
相关论文
共 30 条
[21]  
Reilly W.J., 1931, LAW RETAIL GRAVITATI
[22]   Uncoupled isotonic regression via minimum Wasserstein deconvolution [J].
Rigollet, Philippe ;
Weed, Jonathan .
INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (04) :691-717
[23]   Matching a Distribution by Matching Quantiles Estimation [J].
Sgouropoulos, Nikolaos ;
Yao, Qiwei ;
Yastremiz, Claudia .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (510) :742-759
[24]  
Slawski M., 2022, arXiv
[25]   Linear regression with sparsely permuted data [J].
Slawski, Martin ;
Ben-David, Emanuel .
ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01) :1-36
[26]   Equidistance Quantile Matching Method for Updating IDFCurves under Climate Change [J].
Srivastav, Roshan K. ;
Schardong, Andre ;
Simonovic, Slobodan P. .
WATER RESOURCES MANAGEMENT, 2014, 28 (09) :2539-2562
[27]   Unlabeled Sensing With Random Linear Measurements [J].
Unnikrishnan, Jayakrishnan ;
Haghighatshoar, Saeid ;
Vetterli, Martin .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (05) :3237-3253
[28]  
Vallender SS., 1974, THEORY PROBABILITY I, V18, P784, DOI DOI 10.1137/1118101
[29]  
Wang ZY, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P1072
[30]   Predicting disease risks by matching quantiles estimation for censored data [J].
Wu, Peng ;
Liang, Baosheng ;
Xia, Yifan ;
Tong, Xingwei .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (05) :4544-4562