Kernel-based continuous-time system identification: A parametric approximation

被引:2
|
作者
Scandella, Matteo [1 ]
Moreschini, Alessio [1 ]
Parisini, Thomas [1 ,2 ,3 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[2] Univ Trieste, Dept Engn & Architecture, I-34127 Trieste, Italy
[3] Univ Cyprus, KIOS Res & Innovat Ctr Excellence, CY-1678 Nicosia, Cyprus
基金
英国工程与自然科学研究理事会;
关键词
System Identification; Kernel-based learning; Loewner framework; Continuous-time system identification; LTI system identification; FREQUENCY-DOMAIN; MODELS; SPACES;
D O I
10.1109/CDC49753.2023.10383442
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we discuss the non-parametric estimate problem using kernel-based LTI system identification techniques by constructing a Loewner-based interpolant of the estimated model. Through this framework, we have been able to retrieve a finite-dimensional approximation of the infinite-dimensional estimate obtained using the classical kernel-based methodologies. The employment of the Loewner framework constitutes an enhancement of recent results which propose to use a Pade approximant to obtain a rational transfer function from an irrational transfer function corresponding to the identified impulse response. The enhancement has been illustrated for the identification of the Rao-Garnier benchmark.
引用
收藏
页码:1492 / 1497
页数:6
相关论文
共 50 条
  • [31] Informative Input Design for Kernel-Based System Identification
    Fujimoto, Yusuke
    Sugie, Toshiharu
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 4636 - 4639
  • [32] Informative input design for Kernel-Based system identification
    Fujimoto, Yusuke
    Sugie, Toshiharu
    AUTOMATICA, 2018, 89 : 37 - 43
  • [33] The existence and uniqueness of solutions for kernel-based system identification
    Khosravi, Mohammad
    Smith, Roy S.
    AUTOMATICA, 2023, 148
  • [34] Towards Scalable Kernel-Based Regularized System Identification
    Chen, Lujing
    Chen, Tianshi
    Detha, Utkarsh
    Andersen, Martin S.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1498 - 1504
  • [35] A new kernel-based approach to hybrid system identification
    Pillonetto, Gianluigi
    AUTOMATICA, 2016, 70 : 21 - 31
  • [36] Blind system identification using kernel-based methods
    Bottegal, Giulio
    Risuleo, Riccardo S.
    Hjalmarsson, Hakan
    IFAC PAPERSONLINE, 2015, 48 (28): : 466 - 471
  • [37] A new kernel-based approach for linear system identification
    Pillonetto, Gianluigi
    De Nicolao, Giuseppe
    AUTOMATICA, 2010, 46 (01) : 81 - 93
  • [38] Continuous-time approaches to identification of continuous-time systems
    Kowalczuk, Z
    Kozlowski, J
    AUTOMATICA, 2000, 36 (08) : 1229 - 1236
  • [39] Continuous-time subspace system identification method
    Sung, SW
    Lee, SY
    Kwak, HJ
    Lee, IB
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2001, 40 (13) : 2886 - 2896
  • [40] Continuous-time system identification of a ship on a river
    Padilla, Arturo
    Yuz, Juan I.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 4553 - 4558