Kernel-based continuous-time system identification: A parametric approximation

被引:3
作者
Scandella, Matteo [1 ]
Moreschini, Alessio [1 ]
Parisini, Thomas [1 ,2 ,3 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[2] Univ Trieste, Dept Engn & Architecture, I-34127 Trieste, Italy
[3] Univ Cyprus, KIOS Res & Innovat Ctr Excellence, CY-1678 Nicosia, Cyprus
来源
2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC | 2023年
基金
英国工程与自然科学研究理事会;
关键词
System Identification; Kernel-based learning; Loewner framework; Continuous-time system identification; LTI system identification; FREQUENCY-DOMAIN; MODELS; SPACES;
D O I
10.1109/CDC49753.2023.10383442
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we discuss the non-parametric estimate problem using kernel-based LTI system identification techniques by constructing a Loewner-based interpolant of the estimated model. Through this framework, we have been able to retrieve a finite-dimensional approximation of the infinite-dimensional estimate obtained using the classical kernel-based methodologies. The employment of the Loewner framework constitutes an enhancement of recent results which propose to use a Pade approximant to obtain a rational transfer function from an irrational transfer function corresponding to the identified impulse response. The enhancement has been illustrated for the identification of the Rao-Garnier benchmark.
引用
收藏
页码:1492 / 1497
页数:6
相关论文
共 43 条
[1]  
Antoulas A.C., 2011, Model Reduction and Approximation, P335, DOI DOI 10.1137/1.9781611974829.CH8
[2]   GENERALIZED SYSTEM IDENTIFICATION WITH STABLE SPLINE KERNELS [J].
Aravkin, Aleksandr Y. ;
Burke, James, V ;
Pillonetto, Gianluigi .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (05) :B1419-B1443
[3]  
Argyriou A, 2014, PR MACH LEARN RES, V32, P748
[4]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[5]  
Baker GAJr., 1996, PADE APPROXIMANTS, V2nd end, DOI DOI 10.1017/CBO9780511530074
[6]  
Bittanti S., 2019, Model Identification and Data Analysis
[7]   Kernel-based identification of non-causal systems with application to inverse model control [J].
Blanken, Lennart ;
Oomen, Tom .
AUTOMATICA, 2020, 114
[8]   The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements [J].
Cavanaugh, Joseph E. ;
Neath, Andrew A. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2019, 11 (03)
[9]   EM-based identification of continuous-time ARMA Models from irregularly sampled data [J].
Chen, Fengwei ;
Aguero, Juan C. ;
Gilson, Marion ;
Garnier, Hugues ;
Liu, Tao .
AUTOMATICA, 2017, 77 :293-301
[10]   Robust identification of continuous-time models with arbitrary time-delay from irregularly sampled data [J].
Chen, Fengwei ;
Garnier, Hugues ;
Gilson, Marion .
JOURNAL OF PROCESS CONTROL, 2015, 25 :19-27