Kernel-based continuous-time system identification: A parametric approximation

被引:2
|
作者
Scandella, Matteo [1 ]
Moreschini, Alessio [1 ]
Parisini, Thomas [1 ,2 ,3 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[2] Univ Trieste, Dept Engn & Architecture, I-34127 Trieste, Italy
[3] Univ Cyprus, KIOS Res & Innovat Ctr Excellence, CY-1678 Nicosia, Cyprus
基金
英国工程与自然科学研究理事会;
关键词
System Identification; Kernel-based learning; Loewner framework; Continuous-time system identification; LTI system identification; FREQUENCY-DOMAIN; MODELS; SPACES;
D O I
10.1109/CDC49753.2023.10383442
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we discuss the non-parametric estimate problem using kernel-based LTI system identification techniques by constructing a Loewner-based interpolant of the estimated model. Through this framework, we have been able to retrieve a finite-dimensional approximation of the infinite-dimensional estimate obtained using the classical kernel-based methodologies. The employment of the Loewner framework constitutes an enhancement of recent results which propose to use a Pade approximant to obtain a rational transfer function from an irrational transfer function corresponding to the identified impulse response. The enhancement has been illustrated for the identification of the Rao-Garnier benchmark.
引用
收藏
页码:1492 / 1497
页数:6
相关论文
共 50 条
  • [1] Non-Asymptotic Kernel-Based Parametric Estimation of Continuous-Time Linear Systems
    Pin, Gilberto
    Assalone, Andrea
    Lovera, Marco
    Parisini, Thomas
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (02) : 360 - 373
  • [2] Kernel-based identification of asymptotically stable continuous-time linear dynamical systems
    Scandella, Matteo
    Mazzoleni, Mirko
    Formentin, Simone
    Previdi, Fabio
    INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (06) : 1668 - 1681
  • [3] Continuous-time linear time-varying system identification with a frequency-domain kernel-based estimator
    Lataire, John
    Pintelon, Rik
    Piga, Dario
    Toth, Roland
    IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (04): : 457 - 465
  • [4] Parametric Continuous-Time Blind System Identification
    Elton, Augustus
    Gonzalez, Rodrigo A.
    Welsh, James S.
    Rojas, Cristian R.
    Fu, Minyue
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1474 - 1479
  • [5] Kernel-based Continuous-Time Identification of Hammerstein Models: Application to the case of Ankle Joint Stiffness Dynamics
    Assalone, Andrea
    Pin, Gilberto
    Parisini, Thomas
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 2015 - 2020
  • [6] Kernel-Based Simultaneous Parameter-State Estimation for Continuous-Time Systems
    Li, Peng
    Boem, Francesca
    Pin, Gilberto
    Parisini, Thomas
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (07) : 3053 - 3059
  • [7] Kernel-based Non-Asymptotic Parameter Estimation of Continuous-time Systems
    Pin, Gilberto
    Assalone, Andrea
    Lovera, Marco
    Parisini, Thomas
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 2832 - 2839
  • [8] APPROXIMATION AND IDENTIFICATION OF CONTINUOUS-TIME SYSTEMS
    MAKILA, PM
    INTERNATIONAL JOURNAL OF CONTROL, 1990, 52 (03) : 669 - 687
  • [9] Kernel-Based Non-Asymptotic State Estimation for Linear Continuous-Time Systems
    Pin, Gilberto
    Lovera, Marco
    Assalone, Andrea
    Parisini, Thomas
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 3123 - 3128
  • [10] Identifying Lebesgue-sampled Continuous-time Impulse Response Models: A Kernel-based Approach
    Gonzalez, Rodrigo A.
    Tiels, Koen
    Oomen, Tom
    IFAC PAPERSONLINE, 2023, 56 (02): : 4198 - 4203