Optical solitons of time fractional Kundu-Eckhaus equation and massive Thirring system arises in quantum field theory

被引:1
作者
Rupa, M. L. [1 ]
Aruna, K. [1 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, India
关键词
Shehu Adomian decomposition method; Caputo; Caputo-Fabrizio; Atangana-Baleanu in Caputo sense; APPROXIMATE SOLUTION; WAVE SOLUTIONS;
D O I
10.1007/s11082-023-05914-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study focuses on finding the soliton solutions for the time-fractional Kundu-Eckhaus equation and the time-fractional massive Thirring system using the Shehu Adomian decomposition method (SADM). The obtained solitons exhibit periodic shapes in some particular cases. In order to enhance the understanding of the physical characteristics, the presentation of 3D and contour plots involves the selection of specific parameter values for the solutions. To examine the influence of the fractional parameter theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} on the solutions, two-dimensional graphs are additionally provided. In order to see how the fractional parameter theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} impacts the solutions, 2D graphs are also presented. In order to validate and show the SADM's proficiency, we examine the proposed method with regard to fractional order via Atangana-Baleanu in Caputo sense, Caputo, and Caputo-Fabrizio. The uniqueness and convergence of the SADM are presented. The numerical simulations are discussed both numerically and graphically. The results of this research provide perspectives into the intricate dynamics of quantum field theory and help us understand the behaviour of fractional complicated nonlinear equations and their soliton solutions.
引用
收藏
页数:27
相关论文
共 49 条
  • [1] Numerical solutions of time fractional Sawada Kotera Ito equation via natural transform decomposition method with singular and nonsingular kernel derivatives
    Adivi Sri Venkata, Ravi Kanth
    Kirubanandam, Aruna
    Kondooru, Raghavendar
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14025 - 14040
  • [3] Bright, dark and hybrid multistrip optical soliton solutions of a non-linear Schrodinger equation using modified extended tanh technique with new Riccati solutions
    Ahmad, Shafiq
    Salman
    Ullah, Aman
    Ahmad, Shabir
    Akgul, Ali
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (03)
  • [4] Exact and approximate solutions of time-fractional models arising from physics via Shehu transform
    Akinyemi, Lanre
    Iyiola, Olaniyi S.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (12) : 7442 - 7464
  • [5] Generalization of Caputo-Fabrizio Fractional Derivative and Applications to Electrical Circuits
    Alshabanat, Amal
    Jleli, Mohamed
    Kumar, Sunil
    Samet, Bessem
    [J]. FRONTIERS IN PHYSICS, 2020, 8
  • [6] NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model
    Atangana, Abdon
    Baleanu, Dumitru
    [J]. THERMAL SCIENCE, 2016, 20 (02): : 763 - 769
  • [7] Comparative analysis of numerical with optical soliton solutions of stochastic Gross-Pitaevskii equation in dispersive media
    Baber, Muhammad Zafarullah
    Ahmed, Nauman
    Yasin, Muhammad Waqas
    Iqbal, Muhammad Sajid
    Akgul, Ali
    Riaz, Muhammad Bilal
    Rafiq, Muhammad
    Raza, Ali
    [J]. RESULTS IN PHYSICS, 2023, 44
  • [8] Chaos control of fractional order nonlinear Bloch equation by utilizing sliding mode controller
    Baishya, Chandrali
    Premakumari, R. N.
    Samei, Mohammad Esmael
    Naik, Manisha Krishna
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 174
  • [9] Bakkyaraj T., 2016, Int. J. Appl. Comput. Math., V2, P113
  • [10] Baleanu D, 2012, FRACTIONAL CALCULUS, DOI DOI 10.1142/8180