Potential of AI for the Treatment of Acute Respiratory Distress Syndrome (ARDS)

被引:1
|
作者
Bickenbach, Johannes [1 ,2 ]
机构
[1] Univ Klinikum RWTH Aachen, Klin Operat Intens Med & Intermediate Care, Aachen, Germany
[2] Uniklin RWTH Aachen, Klin Operat Intens Med & Intermediate Care, Pauwelsstr 30, D-52074 Aachen, Germany
来源
ANASTHESIOLOGIE INTENSIVMEDIZIN NOTFALLMEDIZIN SCHMERZTHERAPIE | 2024年 / 59卷 / 01期
关键词
ARDS; Outcome; acute respiratory distress syndrome; artificial intelligence; machine learning; clinical decision support; digital medicine; SCORE;
D O I
10.1055/a-2043-8644
中图分类号
R614 [麻醉学];
学科分类号
100217 ;
摘要
Acute respiratory distress syndrome (ARDS) is still associated with high mortality rates and poses a significant, vital threat to ICU patients because this syndrome is often detected too late (or not at all), and timely therapy and the fastest possible elimination of the underlying causes thus fail to materialize. Artificial Intelligence (AI) solutions can enable clinicians to make every minute in the ICU work for the patient by processing and analyzing all relevant data, thus supporting early diagnosis, adhering to clinical guidelines, and even providing a prognosis for the course of the ICU. This article shows what is already possible and where further challenges lie in this field of digital medicine.
引用
收藏
页码:34 / 44
页数:11
相关论文
共 50 条
  • [1] Pathophysiology of acute respiratory distress syndrome (ARDS)
    Notz, Quirin
    Hermann, Johannes
    Muellenbach, Ralf M.
    Lotz, Christopher
    ANASTHESIOLOGIE INTENSIVMEDIZIN NOTFALLMEDIZIN SCHMERZTHERAPIE, 2024, 59 (01): : 12 - 22
  • [2] When Acute Respiratory Distress Syndrome is not ARDS
    Roberto Tonelli
    Alessandro Andreani
    Ivana Castaniere
    Riccardo Fantini
    Cecilia Mengoli
    Giulio Rossi
    Alessandro Marchioni
    Lung, 2016, 194 : 865 - 866
  • [3] When Acute Respiratory Distress Syndrome is not ARDS
    Tonelli, Roberto
    Andreani, Alessandro
    Castaniere, Ivana
    Fantini, Riccardo
    Mengoli, Cecilia
    Rossi, Giulio
    Marchioni, Alessandro
    LUNG, 2016, 194 (05) : 865 - 866
  • [4] Supervised machine learning for the early prediction of acute respiratory distress syndrome (ARDS)
    Le, Sidney
    Pellegrini, Emily
    Green-Saxena, Abigail
    Summers, Charlotte
    Hoffman, Jana
    Calvert, Jacob
    Das, Ritankar
    JOURNAL OF CRITICAL CARE, 2020, 60 : 96 - 102
  • [5] Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS)
    Qianrui Huang
    Yue Le
    Shusheng Li
    Yi Bian
    Respiratory Research, 25
  • [6] Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS)
    Huang, Qianrui
    Le, Yue
    Li, Shusheng
    Bian, Yi
    RESPIRATORY RESEARCH, 2024, 25 (01)
  • [7] Pseudocyst in Pulmonary Acute Respiratory Distress Syndrome (ARDS)
    Baranwal, Arun K.
    Singhi, Sunit C.
    Jayashree, M.
    Saxena, Akshay K.
    INDIAN JOURNAL OF PEDIATRICS, 2010, 77 (05) : 569 - 572
  • [8] Acute respiratory distress syndrome (ARDS) in neonates and children
    Pfenninger, J
    PAEDIATRIC ANAESTHESIA, 1996, 6 (03): : 173 - 181
  • [9] Pseudocyst in Pulmonary Acute Respiratory Distress Syndrome (ARDS)
    Arun K. Baranwal
    Sunit C. Singhi
    M. Jayashree
    Akshay K. Saxena
    The Indian Journal of Pediatrics, 2010, 77 : 569 - 572
  • [10] Microvesicles as new therapeutic targets for the treatment of the acute respiratory distress syndrome (ARDS)
    Soni, Sanooj
    Tirlapur, Nikhil
    O'Dea, Kieran P.
    Takata, Masao
    Wilson, Michael R.
    EXPERT OPINION ON THERAPEUTIC TARGETS, 2019, 23 (11) : 931 - 941