TemporalStereo: Efficient Spatial-Temporal Stereo Matching Network

被引:6
|
作者
Zhang, Youmin [1 ]
Poggi, Matteo [1 ]
Mattoccia, Stefano [1 ]
机构
[1] Univ Bologna, Dept Comp Sci & Engn DISI, Bologna, Italy
关键词
D O I
10.1109/IROS55552.2023.10341598
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present TemporalStereo, a coarse-to-fine stereo matching network that is highly efficient, and able to effectively exploit the past geometry and context information to boost matching accuracy. Our network leverages sparse cost volume and proves to be effective when a single stereo pair is given. However, its peculiar ability to use spatio-temporal information across stereo sequences allows TemporalStereo to alleviate problems such as occlusions and reflective regions while enjoying high efficiency also in this latter case. Notably, our model trained once with stereo videos - can run in both single-pair and temporal modes seamlessly. Experiments show that our network relying on camera motion is robust even to dynamic objects when running on videos. We validate TemporalStereo through extensive experiments on synthetic (SceneFlow, TartanAir) and real (KITTI 2012, KITTI 2015) datasets. Our model achieves state-of-the-art performance on any of these datasets.
引用
收藏
页码:9528 / 9535
页数:8
相关论文
共 50 条
  • [1] An Efficient Spatial-Temporal Convolution Recurrent Neural Network Surrogate Model for History Matching
    Ma, Xiaopeng
    Zhang, Kai
    Wang, Jian
    Yao, Chuanjin
    Yang, Yongfei
    Sun, Hai
    Yao, Jun
    SPE JOURNAL, 2022, 27 (02): : 1160 - 1175
  • [2] Spatial-Temporal Interleaved Network for Efficient Action Recognition
    Jiang, Shengqin
    Zhang, Haokui
    Qi, Yuankai
    Liu, Qingshan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (01) : 178 - 187
  • [3] Spatial-temporal Graph Transformer Network for Spatial-temporal Forecasting
    Dao, Minh-Son
    Zetsu, Koji
    Hoang, Duy-Tang
    Proceedings - 2024 IEEE International Conference on Big Data, BigData 2024, 2024, : 1276 - 1281
  • [4] Efficient Gait Recognition via Spatial-Temporal Decoupled Network
    Tang, Peisen
    Su, Han
    Gao, Ruixuan
    Zhao, Wensheng
    Tang, Chaoying
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [5] Spatial-temporal comprehensive matching evaluation method for distribution network with distributed generation
    Xiao, Jun
    Li, Hang
    Bai, Linquan
    Zhang, Xinsong
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2020, 30 (12):
  • [6] Efficient Adaptive Spatial-Temporal Attention Network for Traffic Flow Forecasting
    Su, Hongyang
    Wang, Xiaolong
    Chen, Qingcai
    Qin, Yang
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT V, 2023, 14173 : 205 - 220
  • [7] Efficient GPU Spatial-Temporal Multitasking
    Liang, Yun
    Huynh Phung Huynh
    Rupnow, Kyle
    Goh, Rick Siow Mong
    Chen, Deming
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2015, 26 (03) : 748 - 760
  • [8] Fast Spatial-Temporal Transformer Network
    Escher, Rafael Molossi
    de Bem, Rodrigo Andrade
    Jorge Drews Jr, Paulo Lilles
    2021 34TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2021), 2021, : 65 - 72
  • [9] Spatial-Temporal Wireless Network Channels
    Chen, Yifan
    Mucchi, Lorenzo
    Wang, Rui
    2013 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2013, : 2597 - 2602
  • [10] Fast spatial-temporal stereo matching for 3D face reconstruction under speckle pattern projection
    Fu, Keren
    Xie, Yijiang
    Jing, Hailong
    Zhu, Jiangping
    IMAGE AND VISION COMPUTING, 2019, 85 : 36 - 45