共 50 条
Multiplicity and concentration of solutions to fractional anisotropic Schrodinger equations with exponential growth
被引:0
作者:
Thin Van Nguyen
[1
,2
]
Radulescu, Vicentiu D.
[3
,4
,5
]
机构:
[1] Thai Nguyen Univ Educ, Dept Math, Luong Ngoc Quyen St, Thai Nguyen City, Thai Nguyen, Vietnam
[2] Thang Long Univ, Thang Long Inst Math & Appl Sci, Hanoi, Vietnam
[3] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[4] Univ Craiova, Dept Math, St AI Cuza 13, Craiova 200585, Romania
[5] Brno Univ Technol, Fac Elect Engn & Commun, Tech 3058-10, Brno 61600, Czech Republic
关键词:
MOSER-TRUDINGER INEQUALITY;
SOBOLEV-SLOBODECKIJ SPACES;
POSITIVE SOLUTIONS;
ELLIPTIC-EQUATIONS;
EXISTENCE;
DIMENSION;
SYSTEMS;
STATES;
D O I:
10.1007/s00229-022-01450-7
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we consider the Schrodinger equation involving the fractional (p, p(1), . . . , p(m))-Laplacian as follows (-Delta)(p)(s) u + Sigma(m)(i=1)(-Delta)(pi)(s) u + V(epsilon x)(|u|((N-2s)/2s)u + Sigma(m)(i=1)|u|(pi-2)u) = f (u) in R-N, where epsilon is a positive parameter, N = ps, s is an element of(0, 1), 2 <= p < p(1) < center dot center dot center dot < p(m) < +infinity, m >= 1. The nonlinear function f has the exponential growth and potential function V is continuous function satisfying some suitable conditions. Using the penalization method and Ljusternik-Schnirelmann theory, we study the existence, multiplicity and concentration of nontrivial nonnegative solutions for small values of the parameter. In our best knowledge, it is the first time that the above problem is studied.
引用
收藏
页码:499 / 554
页数:56
相关论文
共 50 条