Heterogeneous information fusion based graph collaborative filtering recommendation

被引:0
|
作者
Mu, Ruihui [1 ]
Zeng, Xiaoqin [2 ]
Zhang, Jiying [1 ]
机构
[1] Xinxiang Univ, Coll Comp & Informat Engn, Xinxiang, Henan, Peoples R China
[2] Hohai Univ, Coll Comp & Informat, Nanjing, Jiangsu, Peoples R China
关键词
Heterogeneous information; collaborative filtering; graph neural network; recommender systems;
D O I
10.3233/IDA-227025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, with the application of 5G, graph-based recommendation algorithms have become a research hotspot. Graph neural networks encode the graph structure information in the node representation through an iterative neighbor aggregation method, which can effectively alleviate the problem of data sparsity. In addition, more and more information graph can be used in collaborative filtering recommendation, such as user social information graph, user or item attributed information graph, etc. In this paper, we propose a novel heterogeneous information fusion based graph collaborative filtering method, which models graph data from different heterogeneous graph, and combines them together to enhance presentation learning. Through information propagation and aggregation, our model can learn the latent embeddings effectively and enhance the performance of recommendation. Experimental results on different datasets validate the outperformance of the proposed framework.
引用
收藏
页码:1595 / 1613
页数:19
相关论文
共 50 条
  • [1] Graph Filtering for Recommendation on Heterogeneous Information Networks
    Zhang, Chuanyan
    Hong, Xiaoguang
    IEEE ACCESS, 2020, 8 : 52872 - 52883
  • [2] WeMap Recommendation by Fusion of Knowledge Graph and Collaborative Filtering
    Niu X.
    Yang J.
    Yan H.
    Journal of Geo-Information Science, 2024, 26 (04) : 967 - 977
  • [3] A light heterogeneous graph collaborative filtering model using textual information
    Wang, Chaoyang
    Guo, Zhiqiang
    Li, Guohui
    Li, Jianjun
    Pan, Peng
    Liu, Ke
    KNOWLEDGE-BASED SYSTEMS, 2021, 234
  • [4] GDSRec: Graph-Based Decentralized Collaborative Filtering for Social Recommendation
    Chen, Jiajia
    Xin, Xin
    Liang, Xianfeng
    He, Xiangnan
    Liu, Jun
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (05) : 4813 - 4824
  • [5] Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks
    Zhao, Huan
    Yao, Quanming
    Li, Jianda
    Song, Yangqiu
    Lee, Dik Lun
    KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 635 - 644
  • [6] KGCFRec: Improving Collaborative Filtering Recommendation with Knowledge Graph
    Peng, Jiquan
    Gong, Jibing
    Zhou, Chao
    Zang, Qian
    Fang, Xiaohan
    Yang, Kailun
    Yu, Jing
    ELECTRONICS, 2024, 13 (10)
  • [7] Friends recommendation algorithm based on graph mining and collaborative filtering
    Bin, Zhang
    Dong, Wang Xiao
    ADVANCES IN COMPUTING, CONTROL AND INDUSTRIAL ENGINEERING, 2012, 235 : 399 - 402
  • [8] A Service Recommendation Algorithm Based on Knowledge Graph and Collaborative Filtering
    Jiang, Bo
    Yang, Junchen
    Qin, Yanbin
    Wang, Tian
    Wang, Muchou
    Pan, Weifeng
    IEEE ACCESS, 2021, 9 (09): : 50880 - 50892
  • [9] An Agricultural Information Recommendation Model Based on Collaborative Filtering
    Zou, Shuilong
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS, 2015, 15 : 1850 - 1854
  • [10] A Collaborative Filtering Recommendation Algorithm Based on Community Detection and Graph Neural Network
    Sheng, Jinfang
    Liu, Qingqing
    Hou, Zhengang
    Wang, Bin
    NEURAL PROCESSING LETTERS, 2023, 55 (06) : 7095 - 7112