Streamline video-based automatic fabric pattern recognition using Bayesian-optimized convolutional neural network

被引:8
|
作者
Al Mamun, Abdullah [1 ,4 ]
Nabi, M. M. [1 ]
Islam, Fahmida [1 ]
Bappy, Mahathir Mohammad [1 ]
Uddin, Mohammad Abbas [2 ]
Hossain, Mohammad Sazzad [3 ]
Talukder, Amit [1 ]
机构
[1] Mississippi State Univ, Dept Dyes & Chem Engn, Mississippi State, MS USA
[2] Bangladesh Univ Text, Dept Dyes & Chem Engn, Dhaka, Bangladesh
[3] Star Particle Board Mills Ltd, Dept Dyes & Chem Engn, Bandar, Narayangonj, Bangladesh
[4] 479-2 Hardy Rd,321A McCain Hall, Mississippi State, MS 39762 USA
关键词
Bayesian optimization; convolutional neural networks; classification; fabric pattern recognition; surface texture features; video data; CLASSIFICATION; ORIENTATION;
D O I
10.1080/00405000.2023.2269760
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
Examining fabric weave patterns (FWPs) is connected to image-based surface texture feature (STF) acquisition, which can be difficult due to the structural complexity of woven fabrics. Randomly capturing static images may not correlate with the entire STF of a fabric. Traditionally, FWPs analysis is conducted by human vision, which causes an intensive cognitive load. Ultimately, the human vision-based cognitive load leads to ineffective quality inspection and error-prone FWPs analysis results. Given the above challenges, this study proposes a new streamlined video-based FWPs recognition method by incorporating Bayesian-optimized convolutional neural network (Bayes Opt-CNN). Essentially, this method is capable of leveraging the spatiotemporal features of the fabric's intricate surface structure. In this study, to validate the effectiveness of the proposed method, seven types of fabric structures were captured as streamline videos, which were then converted into sequences of image frames. Subsequently, the Bayesian optimization process was introduced to select the best hyperparameters during CNN-based supervised learning for pattern recognition. The evaluation demonstrates that the proposed method outperforms the benchmark method for identifying FWPs.
引用
收藏
页码:1878 / 1891
页数:14
相关论文
共 50 条
  • [21] Automatic Concrete Damage Recognition Using Multi-Level Attention Convolutional Neural Network
    Shin, Hyun Kyu
    Ahn, Yong Han
    Lee, Sang Hyo
    Kim, Ha Young
    MATERIALS, 2020, 13 (23) : 1 - 13
  • [22] Sentences Prediction Based on Automatic Lip-Reading Detection with Deep Learning Convolutional Neural Networks Using Video-Based Features
    Mahboob, Khalid
    Nizami, Hafsa
    Ali, Fayyaz
    Alvi, Farrukh
    SOFT COMPUTING IN DATA SCIENCE, SCDS 2021, 2021, 1489 : 42 - 53
  • [23] Intelligent Fault Diagnosis of Rotary Machinery by Convolutional Neural Network with Automatic Hyper-Parameters Tuning Using Bayesian Optimization
    Kolar, Davor
    Lisjak, Dragutin
    Pajak, Michal
    Gudlin, Mihael
    SENSORS, 2021, 21 (07)
  • [24] Human Activity Recognition Based On Video Summarization And Deep Convolutional Neural Network
    Kushwaha, Arati
    Khare, Manish
    Bommisetty, Reddy Mounika
    Khare, Ashish
    Computer Journal, 1600, 67 (08): : 2601 - 2609
  • [25] Automatic discovery of resource-restricted Convolutional Neural Network topologies for myoelectric pattern recognition
    Olsson, Alexander E.
    Bjorkman, Anders
    Antfolk, Christian
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 120 (120)
  • [26] Convolutional Neural Network Based Human Movement Recognition Using Surface Electromyography
    Ruan, Ting
    Yin, Kuiying
    Zhou, Shengli
    2018 IEEE 1ST INTERNATIONAL CONFERENCE ON MICRO/NANO SENSORS FOR AI, HEALTHCARE, AND ROBOTICS (NSENS), 2018, : 68 - 72
  • [27] 3D Video-based Motion Capture using Convolutional Neural Networks
    ShangGuan, Huyuan
    Mukundan, Ramakrishnan
    2017 INTERNATIONAL CONFERENCE ON IMAGE AND VISION COMPUTING NEW ZEALAND (IVCNZ), 2017,
  • [28] EEG-based mild depression recognition using convolutional neural network
    Li, Xiaowei
    La, Rong
    Wang, Ying
    Niu, Junhong
    Zeng, Shuai
    Sun, Shuting
    Zhu, Jing
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2019, 57 (06) : 1341 - 1352
  • [29] EEG based depression recognition using improved graph convolutional neural network
    Zhu, Jing
    Jiang, Changting
    Chen, Junhao
    Lin, Xiangbin
    Yu, Ruilan
    Li, Xiaowei
    Bin Hu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 148
  • [30] EEG-based mild depression recognition using convolutional neural network
    Xiaowei Li
    Rong La
    Ying Wang
    Junhong Niu
    Shuai Zeng
    Shuting Sun
    Jing Zhu
    Medical & Biological Engineering & Computing, 2019, 57 : 1341 - 1352