Prescribed solutions of a nonlinear fractional Schrödinger system with quadratic interaction

被引:1
作者
Esfahani, Amin [1 ]
机构
[1] Nazarbayev Univ, Dept Math, Astana 010000, Kazakhstan
关键词
Fractional NLS system; prescribed solution; variational method; NORMALIZED SOLUTIONS; SCHRODINGER-EQUATIONS; STANDING WAVES; GROUND-STATES; EXISTENCE; SOLITONS; NLS;
D O I
10.1142/S0219530523500185
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a nonlinear Schrodinger system with fractional derivative and quadratic interaction. Using constrained variational methods, we prove that this problem has a prescribed solution. Our contribution is that we can deal with a case in the supercritical range.
引用
收藏
页码:89 / 110
页数:22
相关论文
共 35 条
[1]   Variation operators associated with the semigroups generated by Schrodinger operators with inverse square potentials [J].
Almeida, Victor ;
Betancor, Jorge J. ;
Rodriguez-Mesa, Lourdes .
ANALYSIS AND APPLICATIONS, 2023, 21 (02) :353-383
[2]   Multiple normalized solutions for a competing system of Schrodinger equations [J].
Bartsch, Thomas ;
Soave, Nicola .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (01)
[3]   Normalized solutions for nonlinear Schrodinger systems [J].
Bartsch, Thomas ;
Jeanjean, Louis .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (02) :225-242
[4]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[5]   Normalized solutions for a system of coupled cubic Schrodinger equations on R3 [J].
Bartsch, Thomas ;
Jeanjean, Louis ;
Soave, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04) :583-614
[6]   Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications [J].
Buryak, AV ;
Di Trapani, P ;
Skryabin, DV ;
Trillo, S .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 370 (02) :63-235
[7]  
Cazenave T., 2003, SEMILINEAR SCHRODING
[8]  
Chang K.C., 2005, Methods in nonlinear analysis, p1081.47001
[9]   MULTIPLE POSITIVE SOLUTIONS FOR THE SCHRODINGER-POISSON EQUATION WITH CRITICAL GROWTH [J].
Chen, Caixia ;
Qian, Aixia .
MATHEMATICAL FOUNDATIONS OF COMPUTING, 2022, 5 (02) :113-128
[10]   REMARKS ON SOME DISPERSIVE ESTIMATES [J].
Cho, Yonggeun ;
Ozawa, Tohru ;
Xia, Suxia .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (04) :1121-1128