A robust life prediction model for a range of materials under creep-fatigue interaction loading conditions

被引:3
|
作者
Zhang, Tianyu [1 ,2 ,5 ]
Wang, Xiaowei [1 ,2 ]
Xia, Xianxi [3 ,4 ]
Jiang, Yong [1 ,2 ]
Zhang, Xiancheng [2 ,3 ]
Zhao, Liguo [5 ,6 ]
Roy, Anish [5 ]
Gong, Jianming [1 ,2 ]
Tu, Shantung [2 ,3 ]
机构
[1] Nanjing Tech Univ, Sch Mech & Power Engn, Nanjing 211816, Peoples R China
[2] Nanjing Tech Univ, Inst Reliabil Ctr Mfg OcM, Natl Engn Tech Res Ctr Biotechnol, Nanjing 211816, Peoples R China
[3] East China Univ Sci & Technol, Key Lab Pressure Syst & Safety, Minist Educ, Shanghai 200237, Peoples R China
[4] Suzhou Nucl Power Res Inst, Suzhou Xihuan Rd 1688, Suzhou 215004, Peoples R China
[5] Loughborough Univ, Wolfson Sch Mech Elect & Mfg Engn, Epinal Way, Loughborough LE11 3TU, England
[6] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Creep-fatigue interaction; Robust life prediction model; Creep strain; Damage; INTERACTION BEHAVIOR; STAINLESS-STEEL; PART I; DEFORMATION; STRAIN; DUCTILITY; STRESS; DAMAGE; 316H;
D O I
10.1016/j.ijfatigue.2023.107904
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper develops a robust creep-fatigue interaction (CFI) life prediction model which is superior to the existing methods. Specifically, the newly proposed creep damage incorporates the effect of creep strain, which introduces the critical creep strain energy density rate and creep strain evolution term. The predictions are carried out for various materials, including martensitic heat-resistant steel, austenitic stainless steel, nickel-based superalloy, and different loading conditions, including conventional CFI and hybrid-controlled CFI loadings. The results show that all of the tested data falls within +/- 2.5 error band, demonstrating the broad applicability of the proposed model. Based on the proposed model, a continuous CFI failure envelope independent of material, temperature, and CFI loading type is proposed, with almost all the data points lying outside the envelope.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] DAMAGE MODEL OF CREEP-FATIGUE INTERACTION
    JANSON, J
    ENGINEERING FRACTURE MECHANICS, 1979, 11 (02) : 397 - 403
  • [32] A closure model for predicting crack growth under creep-fatigue loading
    Potirniche, Gabriel P.
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 125 : 58 - 71
  • [33] Lifetime prediction in the creep-fatigue interaction regime
    Rubesa, D
    STROJARSTVO, 1998, 40 (3-4): : 113 - 120
  • [34] Lifetime prediction in the creep-fatigue interaction regime
    Rubeša, Domagoj
    Strojarstvo, 40 (03): : 113 - 120
  • [35] Analysis on stress-strain behavior and life prediction of P92 steel under creep-fatigue interaction conditions
    Zhao, Lei
    Xu, Lianyong
    Han, Yongdian
    Jing, Hongyang
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2020, 43 (11) : 2731 - 2743
  • [36] Materials and Fabrication Creep and Creep-Fatigue Interaction and Crack Behavior
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE 2010, VOL 6, PTS A AND B, 2010, : 345 - 345
  • [37] Oxidation-involved life prediction and damage assessment under generalized creep-fatigue loading conditions based on engineering damage mechanics
    Wang, Run-Zi
    Zhang, Xian-Cheng
    Gu, Hang-Hang
    Li, Kai -Shang
    Wen, Jian-Feng
    Miura, Hideo
    Suzuki, Ken
    Tu, Shan -Tung
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 23 : 114 - 130
  • [38] Multiaxial creep-fatigue under anisothermal conditions
    Sermage, JP
    Lemaitre, J
    Desmorat, R
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2000, 23 (03) : 241 - 252
  • [39] Multiaxial creep-fatigue under anisothermal conditions
    Sermage, J.P.
    Lemaitre, J.
    Desmorat, R.
    Fatigue and Fracture of Engineering Materials and Structures, 2000, 23 (03): : 241 - 252
  • [40] Intergranular fracture under creep-fatigue interaction
    Nielsen, Helle S.
    Tvergaard, Viggo
    International Journal of Damage Mechanics, 1998, 7 (01): : 3 - 23