A class of constacyclic codes are generalized Reed-Solomon codes

被引:0
|
作者
Liu, Hongwei [1 ]
Liu, Shengwei [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Constacyclic codes; GRS codes; MDS codes; Schur square;
D O I
10.1007/s10623-023-01294-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Maximum distance separable (MDS) codes are optimal in the sense that the minimum distance cannot be improved for a given length and code size. The most prominent MDS codes are generalized Reed-Solomon (GRS) codes. The square C-2 of a linear code C is the linear code spanned by the component-wise products of every pair of codewords in C. For an MDS code C, it is convenient to determine whether C is a GRS code by determining the dimension of C-2. In this paper, we investigate under what conditions that MDS constacyclic codes are GRS. For this purpose, we first study the square of constacyclic codes. Then, we give a sufficient condition that a constacyclic code is GRS. In particular, we provide a necessary and sufficient condition that a constacyclic code of a prime length is GRS.
引用
收藏
页码:4143 / 4151
页数:9
相关论文
共 50 条
  • [11] On Reed-Solomon codes
    Qunying Liao
    Chinese Annals of Mathematics, Series B, 2011, 32 : 89 - 98
  • [12] Asymmetric quantum generalized Reed-Solomon codes
    La Guardia, Giuliano G.
    2011 IEEE INFORMATION THEORY WORKSHOP (ITW), 2011,
  • [13] Dimensions of the hull of generalized Reed-Solomon codes
    Huang, Jing
    Liu, Jingge
    Yu, Dong
    AIMS MATHEMATICS, 2024, 9 (06): : 13553 - 13569
  • [14] On generalized Hyperbolic Cascaded Reed-Solomon codes
    Kurihara, M
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1999, 82 (11): : 18 - 27
  • [15] Automorphism groups of generalized Reed-Solomon codes
    Joyner, David
    Ksir, Amy
    Traves, Will
    ADVANCES IN CODING THEORY AND CRYPTOGRAPHY, 2007, 3 : 114 - 125
  • [16] On deep holes of generalized Reed-Solomon codes
    Hong, Shaofang
    Wu, Rongjun
    AIMS MATHEMATICS, 2016, 1 (02): : 96 - 101
  • [17] Subspace subcodes of generalized reed-solomon codes
    Cui Jie
    Pei Junying
    Acta Mathematicae Applicatae Sinica, 2001, 17 (4) : 503 - 508
  • [19] On Generalized Hyperbolic Cascaded Reed-Solomon Codes
    Kurihara, Masazumi
    Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English translation of Denshi Tsushin Gakkai Ronbunshi), 1999, 82 (11): : 18 - 26
  • [20] Construction of quantum MDS codes from generalized Reed-Solomon codes
    Lu, Mingwei
    Zhu, Shixin
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2023, 21 (05)