Pressure gradient tailoring effects on vorticity dynamics in the near-wake of bluff-body premixed flames

被引:6
|
作者
Whitman, Samuel H. R. [1 ]
Souders, Tyler J. [1 ]
Meehan, Michael A. [1 ]
Brasseur, James G. [2 ]
Hamlington, Peter E. [1 ]
机构
[1] Univ Colorado, Paul M Rady Dept Mech Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Ann & HJ Smead Aerosp Engn Sci, Boulder, CO 80303 USA
关键词
Premixed combustion; Turbulent flames; Vorticity dynamics; Bluff body stabilization; FLOW; TRANSPORT; BLOWOFF;
D O I
10.1016/j.proci.2022.09.064
中图分类号
O414.1 [热力学];
学科分类号
摘要
We investigate the role of mean streamwise pressure gradients in the development of a bluff-body-stabilized premixed flame in the near-wake of the bluff body. To this end, a triangular prism flame holder is situated in three different channel geometries: a nominal case with straight walls, a nozzle with a stronger mean pressure gradient, and a diffuser with a comparatively weaker mean pressure gradient. All geometries are implemented using embedded boundaries, and adaptive mesh refinement is used to locally resolve all relevant thermal (i.e., flame) and fluid-mechanical (i.e., vorticity) scales. A premixed propane flame, modeled using a 66-step skeletal mechanism, interacts with vorticity in the boundary layer of the triangular bluff body in the presence of each mean pressure gradient. Analysis of flame-related enstrophy budget terms reveals key differences in the behavior of baroclinic torque between cases, the specifics of which are tied to larger variations in the mean flow structure, recirculation zone structure, and confinement effects. Our results show that the baroclinic torque changes significantly among the configurations, with the nozzle exhibiting the largest baroclinic torque production. However, these differences are shown to be only a secondary consequence of the background pressure gradient, with the primary consequence being the change in the recirculation zone length resulting from the different channel configurations. These results are relevant for flame stabilization with bluff bodies, where clear understanding of the sensitivities to global mean pressure gradient is important to engineering design.& COPY; 2022 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:2359 / 2368
页数:10
相关论文
共 49 条
  • [1] The effects of turbulence and pressure gradients on vorticity transport in premixed bluff-body flames
    Rising, Cal J.
    Morales, Anthony J.
    Geikie, Marissa K.
    Ahmed, Kareem A.
    PHYSICS OF FLUIDS, 2021, 33 (01)
  • [2] Turbulent flame-vortex dynamics of bluff-body premixed flames
    Geikie, Marissa K.
    Rising, Cal J.
    Morales, Anthony J.
    Ahmed, Kareem A.
    COMBUSTION AND FLAME, 2021, 223 : 28 - 41
  • [3] Effects of Differential Diffusion on the Stabilization of Unsteady Lean Premixed Flames Behind a Bluff-Body
    Kim, Yu Jeong
    Lee, Bok Jik
    Im, Hong G.
    FLOW TURBULENCE AND COMBUSTION, 2021, 106 (04) : 1125 - 1141
  • [4] Response dynamics of bluff-body stabilized conical premixed turbulent flames with spatial mixture gradients
    Chaudhuri, Swetaprovo
    Cetegen, Baki M.
    COMBUSTION AND FLAME, 2009, 156 (03) : 706 - 720
  • [5] DYNAMICS OF LEAN PREMIXED FLAMES STABILIZED ON A MESO-SCALE BLUFF-BODY IN AN UNCONFINED FLOW FIELD
    Kim, Yu Jeong
    Lee, Bok Jik
    Im, Hong G.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2018, 13 (06) : 1 - 16
  • [6] Effects of Differential Diffusion on the Stabilization of Unsteady Lean Premixed Flames Behind a Bluff-Body
    Yu Jeong Kim
    Bok Jik Lee
    Hong G. Im
    Flow, Turbulence and Combustion, 2021, 106 : 1125 - 1141
  • [7] Effects of free stream flow turbulence on blowoff characteristics of bluff-body stabilized premixed flames
    Chowdhury, Bikram R.
    Cetegen, Baki M.
    COMBUSTION AND FLAME, 2018, 190 : 302 - 316
  • [8] Effects of ammonia in-situ partial cracking on the structure of bluff-body non-premixed flames
    Alfazazi, Adamu
    Es-sebbar, Et-touhami
    Kumar, Sonu
    Abdelwahid, Suliman
    Asiri, Abdulrahman H.
    Zhao, Wanxia
    Im, Hong G.
    Dally, Bassam
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [9] THE EFFECTS OF THE AIR-FUEL VELOCITY RATIO ON TURBULENT NON-PREMIXED BLUFF-BODY FLAMES
    Yang, Tao
    Zhang, Jian
    PROCEEDINGS OF THE ASME POWER CONFERENCE JOINT WITH ICOPE-17, 2017, VOL 1, 2017,
  • [10] Effects of direct current electric field on the blowoff characteristics of bluff-body stabilized conical premixed flames
    Ata, A
    Cowart, JS
    Vranos, A
    Cetegen, BM
    COMBUSTION SCIENCE AND TECHNOLOGY, 2005, 177 (07) : 1291 - 1304