Workability, autogenous shrinkage and microstructure of alkali-activated slag/fly ash slurries: Effect of precursor composition and sodium silicate modulus

被引:37
|
作者
Luo, Ling [1 ,2 ]
Yao, Wu [1 ]
Liang, Guangwei [1 ]
Luo, Yu [3 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Key Lab Adv Civil Engn Mat, Minist Educ, Shanghai 201804, Peoples R China
[2] Xinjiang Univ, Coll Civil Engn & Architecture, Urumqi 830017, Peoples R China
[3] Urban Construct Investment Grp Co Ltd, Guizhou, Qianxinan, Peoples R China
来源
JOURNAL OF BUILDING ENGINEERING | 2023年 / 73卷
关键词
Strength; Autogenous shrinkage; Alkali-activated slag-fly ash; Microstructure; Porosity; BLAST-FURNACE SLAG; FLY-ASH; DRYING SHRINKAGE; GEOPOLYMER; STRENGTH; CONCRETE; DURABILITY; MORTAR; PASTES; DOSAGE;
D O I
10.1016/j.jobe.2023.106712
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The alkali-activated slag/fly ash system is used as a cementitious material to instead of ordinary Portland cement and has good application prospects for recycling various solid wastes and low carbonization in the construction field. In this work, we aim to reveal the effects of changes in precursor composition and sodium silicate modulus in alkali-activated slag/fly ash slurry on strength and autogenous shrinkage, and make a comparative study about workability, autogenous shrinkage and microstructure. The test results showed that the engineering performance of alkali-activated cementitious materials mainly depended on the constituent materials and their ratios. With the increase of fly ash content, the slump was enhanced, the setting time was extended, the strength was slightly reduced, and the autogenous shrinkage was significantly mitigated. For the reference slurry (n = 1.2), the 28 d autogenous shrinkage value of S10F0 was 6064.28 & mu;m/m, the 28 d autogenous shrinkage value of S9F1 was 1516.67 & mu;m/m, and the shrinkage value was reduced by 75%. And with the increase of sodium silicate modulus, the slump was enhanced, the setting time was increased, the early strength was reduced, the later strength developed faster, and the influence on the sample autogenous shrinkage was smaller. The reaction products were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). With the increase of fly ash content, the calcite phase was observed in the reacted products, the flocculent components and many unreacted fly ash spheres in diameter were observed, and there were many micro-pores in the hardened solid particles. Combined with autogenous shrinkage and mercury intrusion porosimetry analysis, it could be discovered that when the modulus of sodium silicate increased, the capillary pore volume increased, and the total porosity and pore size decreased significantly, when the modulus of the activator increased from 1.2 to 2.0, the porosity decreased by 44.36%. making the autogenous shrinkage and strength increase. When the activator modulus was 1.2 and the content of fly ash was more than 30%, the content of NaOH in the solution was higher, which accelerated the early reaction rate, resulting in more pores inside the slurry, larger pore size, smaller capillary pore volume, and expansion of alkali-activated material slurry volume. This study may shed valuable insights to the improvement of autogenous shrinkage by adjusting precursor composition and sodium silicate modulus.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Mechanisms of autogenous shrinkage of alkali-activated fly ash-slag pastes cured at ambient temperature within 24 h
    Fang, Guohao
    Bahrami, Hossein
    Zhang, Mingzhong
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 171 : 377 - 387
  • [32] Effect of sodium sulfate on strength and microstructure of alkali-activated fly ash based geopolymer
    Lv, Qing-feng
    Wang, Zi-shuai
    Gu, Liu-yang
    Chen, Yi
    Shan, Xiao-kang
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2020, 27 (06) : 1691 - 1702
  • [33] Study on the characteristics of alkali-activated fly ash-slag improved by cenosphere: Hydration and drying shrinkage
    Ma, Hongqiang
    Fu, Congcong
    Huang, Kang
    Dai, Enyang
    Zhang, Shaochen
    Fang, Youliang
    Feng, Jingjing
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 372
  • [34] EFFECT OF A COMBINATION OF FLY ASH AND SHRINKAGE-REDUCING ADDITIVES ON THE PROPERTIES OF ALKALI-ACTIVATED SLAG-BASED MORTARS
    Bilek, Vlastimil
    Kalina, Lukas
    Koplik, Jan
    Moncekova, Miroslava
    Novotny, Radoslav
    MATERIALI IN TEHNOLOGIJE, 2016, 50 (05): : 813 - 817
  • [35] Effect of Polyphosphates on Properties of Alkali-Activated Slag/Fly Ash Concrete
    Mosleh, Youssef A.
    Gharieb, Mahmoud
    Rashad, Alaa M.
    ACI MATERIALS JOURNAL, 2023, 120 (02) : 65 - 76
  • [36] Factors affecting the drying shrinkage of alkali-activated slag/fly ash mortars
    Aiken, Timothy A.
    Kwasny, Jacek
    Zhou, Zuyao
    Mcpolin, Daniel
    Sha, Wei
    MRS ADVANCES, 2023, 8 (22) : 1266 - 1272
  • [37] Effect of fly ash and gypsum on drying shrinkage and mechanical properties of one-part alkali-activated slag mortar
    Chen, Haiming
    Zhang, Yadong
    Chen, Jie
    Qin, Ziguang
    Wu, Peng
    STRUCTURAL CONCRETE, 2024,
  • [38] PREPARATION AND PROPERTIES OF ALKALI-ACTIVATED CEMENT CONTAINING PHOSPHOROUS SLAG AND FLY ASH
    You, Duo
    Fang, Yonghao
    Zhu, Chenhui
    Gong, Yongfan
    Gu, Yamin
    CERAMICS-SILIKATY, 2016, 60 (01) : 63 - 67
  • [39] Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers
    Jang, J. G.
    Lee, N. K.
    Lee, H. K.
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 50 : 169 - 176
  • [40] Effect of Solid Sodium Silicate on Workability, Hydration and Strength of Alkali-Activated GGBS/Fly Ash Paste
    Dong, Tingkai
    Sun, Tao
    Xu, Fang
    Ouyang, Gaoshang
    Wang, Hongjian
    Yang, Fan
    Wang, Ziyan
    COATINGS, 2023, 13 (04)