Quantum Metropolis-Hastings algorithm with the target distribution calculated by quantum Monte Carlo integration

被引:2
作者
Miyamoto, Koichi [1 ]
机构
[1] Osaka Univ, Ctr Quantum Informat & Quantum Biol, Toyonaka, Osaka 5600043, Japan
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 03期
关键词
GENERATIVE ADVERSARIAL NETWORK; GRAVITATIONAL-WAVES; MARKOV-CHAINS; SEARCH;
D O I
10.1103/PhysRevResearch.5.033059
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Markov chain Monte Carlo (MCMC) method, especially the Metropolis-Hastings (MH) algorithm, is a widely used technique for sampling from a target probability distribution P on a state space ⠂ and applied to various problems such as estimation of parameters in statistical models in the Bayesian approach. Quantum algorithms for MCMC have been proposed, yielding the quadratic speedup with respect to the spectral gap ⠃ compared to classical counterparts. In this paper, we consider the quantum version of the MH algorithm in the case that calculating P is costly because the log-likelihood L for a state x & ISIN; ⠂ is obtained via computing the sum of many terms, 1EM-1 i=0 ⠄(i, x). We propose calculating L by quantum Monte Carlo integration and combine it M with the existing method called quantum simulated annealing (QSA) to generate the quantum state that encodes P in amplitudes. We consider not only state generation but also finding a credible interval for a parameter, a common task in Bayesian inference. In the proposed method for credible interval calculation, the number of queries to the quantum circuit to compute ⠄ scales on ⠃, the required accuracy ⠅, and the standard deviation & sigma; of ⠄ as O & SIM;(& sigma; /⠅2 ⠃3/2), in contrast to O & SIM;(M/⠅ ⠃1/2) for QSA with L calculated exactly. Therefore, the proposed method is advantageous if & sigma; scales on M sublinearly. As one such example, we consider parameter estimation in a gravitational wave experiment, where & sigma; = O(M1/2).
引用
收藏
页数:22
相关论文
共 61 条
[1]   GW150914: The Advanced LIGO Detectors in the Era of First Discoveries [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. ;
Barr, B. .
PHYSICAL REVIEW LETTERS, 2016, 116 (13)
[2]   GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, G. ;
Allocca, A. ;
Aloy, M. A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S., V ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Badaracco, F. ;
Bader, M. K. M. ;
Bae, S. ;
Baker, P. T. .
PHYSICAL REVIEW X, 2019, 9 (03)
[3]   GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run [J].
Abbott, R. ;
Abbott, T. D. ;
Abraham, S. ;
Acernese, F. ;
Ackley, K. ;
Adams, A. ;
Adams, C. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Akcay, S. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Anand, S. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S., V ;
Ansoldi, S. ;
Antelis, J. M. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arene, M. ;
Arnaud, N. ;
Aronson, S. M. ;
Arun, K. G. ;
Asali, Y. ;
Ascenzi, S. ;
Ashton, G. ;
Aston, S. M. ;
Astone, P. ;
Aubin, F. ;
Aufmuth, P. ;
AultONeal, K. ;
Austin, C. ;
Avendano, V ;
Babak, S. ;
Badaracco, F. .
PHYSICAL REVIEW X, 2021, 11 (02)
[4]   Optimal Tuning of Quantum Generative Adversarial Networks for Multivariate Distribution Loading [J].
Agliardi, Gabriele ;
Prati, Enrico .
QUANTUM REPORTS, 2022, 4 (01) :75-105
[5]   FINDCHIRP: An algorithm for detection of gravitational waves from inspiraling compact binaries [J].
Allen, Bruce ;
Anderson, Warren G. ;
Brady, Patrick R. ;
Brown, Duncan A. ;
Creighton, Jolien D. E. .
PHYSICAL REVIEW D, 2012, 85 (12)
[6]   Noisy Monte Carlo: convergence of Markov chains with approximate transition kernels [J].
Alquier, P. ;
Friel, N. ;
Everitt, R. ;
Boland, A. .
STATISTICS AND COMPUTING, 2016, 26 (1-2) :29-47
[7]   Noise Robustness and Experimental Demonstration of a Quantum Generative Adversarial Network for Continuous Distributions [J].
Anand, Abhinav ;
Romero, Jonathan ;
Degroote, Matthias ;
Aspuru-Guzik, Alan .
ADVANCED QUANTUM TECHNOLOGIES, 2021, 4 (05)
[8]   A quantum generative adversarial network for distributions [J].
Assouel, Amine ;
Jacquier, Antoine ;
Kondratyev, Alexei .
QUANTUM MACHINE INTELLIGENCE, 2022, 4 (02)
[9]   Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters [J].
Balasubramanian, R ;
Sathyaprakash, BS ;
Dhurandhar, SV .
PHYSICAL REVIEW D, 1996, 53 (06) :3033-3055
[10]  
Bauer F. L., 1960, Numerische Mathematik, V2, P137, DOI [10.1007/BF01386217, DOI 10.1007/BF01386217]