A review of remote sensing estimation of crop water productivity: definition, methodology, scale, and evaluation

被引:4
|
作者
Cheng, Minghan [1 ,2 ,3 ]
Yin, Dameng [3 ,4 ]
Wu, Wenbin [5 ]
Cui, Ningbo [6 ,7 ]
Nie, Chenwei [3 ,4 ]
Shi, Lei [3 ,4 ]
Liu, Shuaibing [3 ,4 ]
Yu, Xun [3 ,4 ]
Bai, Yi [3 ,4 ]
Liu, Yadong [3 ,4 ]
Zhu, Yuqin [8 ]
Jin, Xiuliang [3 ,4 ]
机构
[1] Yangzhou Univ, Agr Coll, Jiangsu Key Lab Crop Genet & Physiol, Jiangsu Key Lab Crop Cultivat & Physiol, Yangzhou, Peoples R China
[2] Yangzhou Univ, Jiangsu Coinnovat Ctr Modern Prod Technol Grain Cr, Yangzhou, Peoples R China
[3] Chinese Acad Agr Sci, Inst Crop Sci, Key Lab Crop Physiol & Ecol, Minist Agr, Beijing, Peoples R China
[4] Chinese Acad Agr Sci, Natl Nanfan Res Inst Sanya, Sanya, Peoples R China
[5] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Beijing, Peoples R China
[6] Sichuan Univ, State Key Lab Hydraul & Mt River Engn, Chengdu, Sichuan, Peoples R China
[7] Sichuan Univ, Coll Water Resource & Hydropower, Chengdu, Sichuan, Peoples R China
[8] Jiangsu Tongfang Real Estate Assets Appraisal Plan, Wuxi, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Evapotranspiration; energy balance; crop yield; data assimilation; application scenarios; GROSS PRIMARY PRODUCTION; LAND-SURFACE ENERGY; NET ECOSYSTEM EXCHANGE; USE EFFICIENCY MODEL; EDDY COVARIANCE; WHEAT YIELD; TIME-SERIES; EVAPOTRANSPIRATION PRODUCTS; WINTER-WHEAT; GLOBAL EVAPOTRANSPIRATION;
D O I
10.1080/01431161.2023.2240523
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The scarcity of water resources is one of the biggest problems restricting food production. Crop water productivity (CWP) is a practical and quantifiable indicator for characterizing agricultural water use efficiency. Remote sensing technology provides an accurate, cost-effective, and regional method for estimating CWP. However, remote sensing methods for CWP estimation and their application scenarios need to be summarized. In this paper, the CWP and related parameters are clearly defined. Different types of CWP estimation methods and their application at different scales are reviewed. CWP, as the crop yield ratio to actual crop evapotranspiration (ETa), is typically not directly estimated but calculated by estimating crop yield and ETa. Therefore, crop yield and ETa estimation methods are summarized, respectively. ETa can be remotely sensed using surface energy balance residual methods, semi-empirical formula methods, statistical regression methods, and ground instruments. Crop yield can be remotely estimated using data assimilation, statistical regression, and ground instruments. Moreover, the application of these methods at the point, field, and regional scales is further reviewed from previous literature. Finally, the in-situ measurements of CWP are introduced. This review can provide a detailed reference for follow-up studies related to CWP.
引用
收藏
页码:5033 / 5068
页数:36
相关论文
共 50 条
  • [41] ESTIMATION OF SUNFLOWER CROP PRODUCTION BASED ON REMOTE SENSING TECHNIQUES
    Herbei, Mihai Valentin
    Popescu, Cosmin Alin
    Bertici, Radu
    Sala, Florin
    AGROLIFE SCIENTIFIC JOURNAL, 2023, 12 (01): : 87 - 96
  • [42] Estimation of Hail Damage Using Crop Models and Remote Sensing
    Gobbo, Stefano
    Ghiraldini, Alessandro
    Dramis, Andrea
    Dal Ferro, Nicola
    Morari, Francesco
    REMOTE SENSING, 2021, 13 (14)
  • [43] MAIZE CROP YIELD ESTIMATION WITH REMOTE SENSING AND EMPIRICAL MODELS
    Fernandez-Ordonez, Yolanda. M.
    Soria-Ruiz, J.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3035 - 3038
  • [44] Estimation of ET and Crop Water Productivity in a Semi-Arid Region Using a Large Aperture Scintillometer and Remote Sensing-Based SETMI Model
    Singh, Pragya
    Sehgal, Vinay Kumar
    Dhakar, Rajkumar
    Neale, Christopher M. U.
    Goncalves, Ivo Zution
    Rani, Alka
    Jha, Prakash Kumar
    Das, Deb Kumar
    Mukherjee, Joydeep
    Khanna, Manoj
    Dubey, Swatantra Kumar
    WATER, 2024, 16 (03)
  • [45] Remote Sensing Grassland Productivity Attributes: A Systematic Review
    Bangira, Tsitsi
    Mutanga, Onisimo
    Sibanda, Mbulisi
    Dube, Timothy
    Mabhaudhi, Tafadzwanashe
    REMOTE SENSING, 2023, 15 (08)
  • [46] Evaluation of Water and Carbon Estimation Models in the Caatinga Biome Based on Remote Sensing
    de Oliveira, Michele L.
    dos Santos, Carlos Antonio Costa
    Santos, Francineide Amorim Costa
    de Oliveira, Gabriel
    Santos, Celso Augusto Guimaraes
    Bezerra, Ulisses Alencar
    Cunha, John Elton de B. L.
    da Silva, Richarde Marques
    FORESTS, 2023, 14 (04):
  • [47] A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques
    Gholizadeh, Mohammad Haji
    Melesse, Assefa M.
    Reddi, Lakshmi
    SENSORS, 2016, 16 (08)
  • [48] THE REMOTE-SENSING OF OCEANIC PRIMARY PRODUCTIVITY - A REVIEW
    COLLINS, DJ
    ADVANCED OPTICAL INSTRUMENTATION FOR REMOTE SENSING OF THE EARTHS SURFACE FROM SPACE, 1989, 1129 : 92 - 106
  • [49] Ocean primary productivity estimation of China Sea by remote sensing
    Pan, DL
    Guan, WM
    Bai, Y
    Huang, HQ
    PROGRESS IN NATURAL SCIENCE, 2005, 15 (07) : 627 - 632
  • [50] High-resolution crop yield and water productivity dataset generated using random forest and remote sensing
    Cheng, Minghan
    Jiao, Xiyun
    Shi, Lei
    Penuelas, Josep
    Kumar, Lalit
    Nie, Chenwei
    Wu, Tianao
    Liu, Kaihua
    Wu, Wenbin
    Jin, Xiuliang
    SCIENTIFIC DATA, 2022, 9 (01)