Cyclic Structure Jacobi Semi-symmetric Real Hypersurfaces in the Complex Hyperbolic Quadric

被引:0
作者
Jeong, Imsoon [1 ]
Suh, Young Jin [2 ,3 ]
机构
[1] Cheongju Univ, Dept Math Educ, Chungcheongbuk Do 28503, South Korea
[2] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
[3] Kyungpook Natl Univ, RIRCM, Daegu 41566, South Korea
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2023年 / 63卷 / 02期
基金
新加坡国家研究基金会;
关键词
cyclic Ricci semi-symmetric; 2t-isotropic; 2t-principal; Kahler structure; complex conjugation; complex quadric; EINSTEIN HYPERSURFACES; SPACE; OPERATOR;
D O I
10.5666/KMJ.2023.63.2.287
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the notion of cyclic structure Jacobi semi symmetric real hypersurfaces in the complex hyperbolic quadric Qm* = SO02,m/SO2SOm. We give a classifiction of when real hypersurfaces in the complex hyperbolic quadric Qm* having 2t-principal or 2t-isotropic unit normal vector fields have cyclic structure Jacobi semi-symmetric tensor.
引用
收藏
页码:287 / 311
页数:25
相关论文
共 28 条
  • [1] Berndt J., 2022, ADV ANAL GEOM
  • [2] Besse A., 1987, EINSTEIN MANIFOLDS E, V10, DOI 10.1007/978-3-540-74311-8
  • [3] Characterizations of the Lorentzian manifolds admitting a type of semi-symmetric metric connection
    Chaubey, Sudhakar K.
    Suh, Young Jin
    Chand, De Uday
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [4] Perez JD, 2009, KYUNGPOOK MATH J, V49, P211
  • [5] Real hypersurfaces in the complex hyperbolic quadric with normal Jacobi operator of Codazzi type
    Jeong, Imsoon
    Pak, Eunmi
    Suh, Young Jin
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2021, 32 (14)
  • [6] Real hypersurfaces in the complex quadric with Killing structure Jacobi operator
    Jeong, Imsoon
    Suh, Young Jin
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2019, 139 : 88 - 102
  • [7] Contact real hypersurfaces in the complex hyperbolic quadric
    Klein, Sebastian
    Suh, Young Jin
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (04) : 1481 - 1494
  • [8] Knapp A. W., 2002, Lie groups beyond an introduction, Vsecond
  • [9] Kobayashi S., 1996, Wiley Classics Lib., VI
  • [10] Commuting Jacobi Operators on Real Hypersurfaces of Type B in the Complex Quadric
    Lee, Hyunjin
    Suh, Young Jin
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2020, 23 (04)