A Comparative Study of Machine Learning Techniques to Predict Types of Breast Cancer Recurrence

被引:0
作者
Chakkouch, Meryem [1 ]
Ertel, Merouane [1 ]
Mengad, Aziz [2 ]
Amali, Said [3 ]
机构
[1] Moulay Ismail Univ Meknes, Fac Sci, Informat & Applicat Lab IA, Meknes, Morocco
[2] Fac Med & Pharm Rabat FMPh, Ctr Doctoral Studies Life & Hlth Sci Drug Sci Form, Lab Pharmacol & Toxicol LPTR, Rabat, Morocco
[3] FSJES Moulay Ismail Univ, Informat & Applicat Lab IA, Meknes, Morocco
关键词
-Breast cancer; machine learning; recurrence prediction; classification multi-classes; logistic regression; decision tree; K-Nearest Neighbors; artificial neural network;
D O I
10.14569/IJACSA.2023.0140531
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
prediction of breast cancer recurrence is a crucial problem in cancer research that requires accurate and efficient prediction models. This study aims to compare the performance of different machine learning techniques in predicting types of breast cancer recurrence. In this study, the performance of logistic regression, decision tree, K-Nearest Neighbors, and artificial neural network algorithms was compared on a breast cancer recurrence dataset. The results show that the artificial neural network algorithm outperformed the other algorithms with 91% accuracy, followed by the decision tree (DT) algorithm and K-Nearest Neighbors (kNN) also performed well with accuracies of 90.10% and 88.20%, respectively, while the logistic regression algorithm had the lowest accuracy of 84.60%. The results of this study provide insight into the effectiveness of different machine learning techniques in predicting types of breast cancer recurrence and could guide the development of more accurate prediction models.
引用
收藏
页码:296 / 302
页数:7
相关论文
共 50 条
  • [41] Comparison on Some Machine Learning Techniques in Breast Cancer Classification
    Mashudi, Nurul Amirah
    Rossli, Syaidathul Amaleena
    Ahmad, Norulhusna
    Noor, Norliza Mohd
    2020 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES 2020): LEADING MODERN HEALTHCARE TECHNOLOGY ENHANCING WELLNESS, 2021, : 499 - 504
  • [42] Machine Learning Techniques for Breast Cancer Detection
    Hall, Karl
    Chang, Victor
    Mitchell, Paul
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON COMPLEXITY, FUTURE INFORMATION SYSTEMS AND RISK (COMPLEXIS), 2022, : 116 - 122
  • [43] Machine learning techniques in breast cancer preventive diagnosis: a review
    Anastasi, Giada
    Franchini, Michela
    Pieroni, Stefania
    Buzzi, Marina
    Buzzi, Maria Claudia
    Leporini, Barbara
    Molinaro, Sabrina
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 82805 - 82848
  • [44] Machine Learning Techniques for Classification of Breast Cancer
    Osmanovic, Ahmed
    Halilovic, Sabina
    Ilah, Layla Abdel
    Fojnica, Adnan
    Gromilic, Zehra
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 1, 2019, 68 (01): : 197 - 200
  • [45] Comparative study of machine learning techniques to predict fuel consumption of a marine diesel engine
    Yuksel, Onur
    Bayraktar, Murat
    Sokukcu, Mustafa
    OCEAN ENGINEERING, 2023, 286
  • [46] Predictive Analysis Of Breast Cancer Using Machine Learning Techniques
    Agrawal, Rashmi
    INGENIERIA SOLIDARIA, 2019, 15 (29):
  • [47] A comparative study of breast cancer tumor classification by classical machine learning methods and deep learning method
    Yadavendra
    Chand, Satish
    MACHINE VISION AND APPLICATIONS, 2020, 31 (06)
  • [48] A comparative study of breast cancer tumor classification by classical machine learning methods and deep learning method
    Satish Yadavendra
    Machine Vision and Applications, 2020, 31
  • [49] Application of Artificial Intelligence Techniques to Predict Risk of Recurrence of Breast Cancer: A Systematic Review
    Mazo, Claudia
    Aura, Claudia
    Rahman, Arman
    Gallagher, William M.
    Mooney, Catherine
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (09):
  • [50] Using Machine Learning Techniques to Predict Esthetic Features of Buildings
    Aydin, Yusuf Cihat
    Mirzaei, Parham A.
    Hale, Jonathan
    JOURNAL OF ARCHITECTURAL ENGINEERING, 2021, 27 (03)