Improving the accuracy of genomic prediction for meat quality traits using whole genome sequence data in pigs

被引:6
作者
Zhuang, Zhanwei [1 ,2 ,3 ]
Wu, Jie [1 ,2 ,3 ]
Qiu, Yibin [1 ,2 ,3 ]
Ruan, Donglin [1 ,2 ,3 ]
Ding, Rongrong [1 ,2 ,3 ]
Xu, Cineng [1 ,2 ,3 ]
Zhou, Shenping [1 ,2 ,3 ]
Zhang, Yuling [1 ,2 ,3 ]
Liu, Yiyi [1 ,2 ,3 ]
Ma, Fucai [1 ,2 ,3 ]
Yang, Jifei [1 ,2 ,3 ]
Sun, Ying [1 ,2 ,3 ]
Zheng, Enqin [1 ,2 ,3 ]
Yang, Ming [4 ]
Cai, Gengyuan [1 ,2 ,3 ]
Yang, Jie [1 ,2 ,3 ]
Wu, Zhenfang [1 ,2 ,3 ,5 ]
机构
[1] South China Agr Univ, Coll Anim Sci, Guangzhou 510642, Peoples R China
[2] South China Agr Univ, Natl Engn Res Ctr Breeding Swine Ind, Guangzhou 510642, Peoples R China
[3] Guangdong Prov Key Lab Agroanim Genom & Mol Breedi, Guangzhou 510642, Peoples R China
[4] Zhongkai Univ Agr & Engn, Coll Anim Sci & Technol, Guangzhou 510225, Peoples R China
[5] Yunfu Subctr Guangdong Lab Lingnan Modern Agr, Yunfu 527400, Peoples R China
关键词
Genomic prediction; Meat quality; Pigs; Whole genome sequence; MISSING HERITABILITY; GLYCOGEN-CONTENT; VARIANTS; MUTATION;
D O I
10.1186/s40104-023-00863-y
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
BackgroundPork quality can directly affect customer purchase tendency and meat quality traits have become valuable in modern pork production. However, genetic improvement has been slow due to high phenotyping costs. In this study, whole genome sequence (WGS) data was used to evaluate the prediction accuracy of genomic best linear unbiased prediction (GBLUP) for meat quality in large-scale crossbred commercial pigs.ResultsWe produced WGS data (18,695,907 SNPs and 2,106,902 INDELs exceed quality control) from 1,469 sequenced Duroc x (Landrace x Yorkshire) pigs and developed a reference panel for meat quality including meat color score, marbling score, L* (lightness), a* (redness), and b* (yellowness) of genomic prediction. The prediction accuracy was defined as the Pearson correlation coefficient between adjusted phenotypes and genomic estimated breeding values in the validation population. Using different marker density panels derived from WGS data, accuracy differed substantially among meat quality traits, varied from 0.08 to 0.47. Results showed that MultiBLUP outperform GBLUP and yielded accuracy increases ranging from 17.39% to 75%. We optimized the marker density and found medium- and high-density marker panels are beneficial for the estimation of heritability for meat quality. Moreover, we conducted genotype imputation from 50K chip to WGS level in the same population and found average concordance rate to exceed 95% and r(2) = 0.81.ConclusionsOverall, estimation of heritability for meat quality traits can benefit from the use of WGS data. This study showed the superiority of using WGS data to genetically improve pork quality in genomic prediction.
引用
收藏
页数:15
相关论文
共 58 条
[1]  
[Anonymous], MANUAL BLUPF90 FAMIL
[2]  
Berg E., 2006, PORK COMPOSITION QUA
[3]   Genomic selection for meat quality traits in Nelore cattle [J].
Braga Magalhaes, Ana Fabricia ;
Schenkel, Flavio Schramm ;
Garcia, Diogo Anastacio ;
Mansan Gordo, Daniel Gustavo ;
Tonussi, Rafael Lara ;
Espigolan, Rafael ;
de Oliveira Silva, Rafael Medeiros ;
Braz, Camila Urbano ;
Fernandes Junior, Gerardo Alves ;
Baldi, Fernando ;
Carvalheiro, Roberto ;
Boligon, Arione Augusti ;
de Oliveira, Henrique Nunes ;
Loyola Chardulo, Luis Arthur ;
de Albuquerque, Lucia Galvao .
MEAT SCIENCE, 2019, 148 :32-37
[4]   Optimizing Selection of the Reference Population for Genotype Imputation From Array to Sequence Variants [J].
Butty, Adrien M. ;
Sargolzaei, Mehdi ;
Miglior, Filippo ;
Stothard, Paul ;
Schenkel, Flavio S. ;
Gredler-Grandl, Birgit ;
Baes, Christine F. .
FRONTIERS IN GENETICS, 2019, 10
[5]   Second-generation PLINK: rising to the challenge of larger and richer datasets [J].
Chang, Christopher C. ;
Chow, Carson C. ;
Tellier, Laurent C. A. M. ;
Vattikuti, Shashaank ;
Purcell, Shaun M. ;
Lee, James J. .
GIGASCIENCE, 2015, 4
[6]   Strategies for genotype imputation in composite beef cattle [J].
Chud, Tatiane C. S. ;
Ventura, Ricardo V. ;
Schenkel, Flavio S. ;
Carvalheiro, Roberto ;
Buzanskas, Marcos E. ;
Rosa, Jaqueline O. ;
Mudadu, Mauricio de Alvarenga ;
da Silva, Marcos Vinicius G. B. ;
Mokry, Fabiana B. ;
Marcondes, Cintia R. ;
Regitano, Luciana C. A. ;
Munari, Danisio P. .
BMC GENETICS, 2015, 16
[7]  
Ciobanu D, 2001, GENETICS, V159, P1151
[8]  
Ding R, 2022, bioRxiv, DOI [10.1101/2022.05.18.492518, 10.1101/2022.05.18.492518, DOI 10.1101/2022.05.18.492518]
[9]   Genomic Prediction for Quantitative Traits Is Improved by Mapping Variants to Gene Ontology Categories in Drosophila melanogaster [J].
Edwards, Stefan M. ;
Sorensen, Izel F. ;
Sarup, Pernille ;
Mackay, Trudy F. C. ;
Sorensen, Peter .
GENETICS, 2016, 203 (04) :1871-+
[10]   Use of biological priors enhances understanding of genetic architecture and genomic prediction of complex traits within and between dairy cattle breeds [J].
Fang, Lingzhao ;
Sahana, Goutam ;
Ma, Peipei ;
Su, Guosheng ;
Yu, Ying ;
Zhang, Shengli ;
Lund, Mogens Sando ;
Sorensen, Peter .
BMC GENOMICS, 2017, 18