LiAlO2-Modified Li Negative Electrode with Li10GeP2S12 Electrolytes for Stable All-Solid-State Lithium Batteries

被引:14
作者
Chang, Xinshuang [1 ,2 ]
Weng, Wei [1 ]
Li, Mengqi [1 ]
Wu, Ming [1 ]
Chen, George Z. [3 ]
Fow, Kam Loon [2 ,4 ,5 ]
Yao, Xiayin [1 ,6 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[2] Univ Nottingham Ningbo China, Fac Sci & Engn, Dept Chem & Environm Engn, Ningbo 315100, Zhejiang, Peoples R China
[3] Univ Nottingham, Fac Engn, Dept Chem & Environm Engn, Nottingham NG7 2RD, England
[4] Univ Nottingham Ningbo China, Key Lab Carbonaceous Wastes Proc & Proc Intensific, Ningbo 315100, Zhejiang, Peoples R China
[5] Univ Nottingham Ningbo China, Nottingham Ningbo China Beacons Excellence Res & I, Ningbo 315201, Zhejiang, Peoples R China
[6] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
LiAlO2; interface modification; lithium negative electrode; Li10GeP2S12; magnetic sputtering; all-solid-state batteries; METAL ANODE; INTERPHASE; STABILITY; LAYER;
D O I
10.1021/acsami.3c03242
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium (Li) metal has an ultrahigh specific capacity in theory with an extremely negative potential (versus hydrogen), receiving extensive attention as a negative electrode material in batteries. However, the formation of Li dendrites and unstable interfaces due to the direct Li metal reaction with solid sulfide-based electrolytes hinders the application of lithium metal in all-solid-state batteries. In this work, we report the successful fabrication of a LiAlO2 interfacial layer on a Li/Li10GeP2S12 interface through magnetic sputtering. As LiAlO2 can be a good Li+ ion conductor but an electronic insulator, the LiAlO2 interface layer can effectively suppress Li dendrite growth and the severe interface reaction between Li and Li10GeP2S12. The Li@LiAlO2 200 nm/Li10GeP2S12/Li@LiAlO2 200 nm symmetric cell can remain stable for 3000 h at 0.1 mA cm-2 under 0.1 mAh cm-2. Moreover, unlike the rapid capacity decay of a cell with a pristine lithium negative electrode, the Li@LiAlO2 200 nm/Li10GeP2S12/LiCoO2@LiNbO3 cell delivers a reversible capacity of 118 mAh g-1 and a high energy efficiency of 96.6% after 50 cycles. Even at 1.0 C, the cell with the Li@LiAlO2 200 nm electrode can retain 95% of its initial capacity after 800 cycles.
引用
收藏
页码:21179 / 21186
页数:8
相关论文
共 50 条
[41]   Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode [J].
Wenzel, Sebastian ;
Randau, Simon ;
Leichtweiss, Thomas ;
Weber, Dominik A. ;
Sann, Joachim ;
Zeier, Wolfgang G. ;
Janek, Juergen .
CHEMISTRY OF MATERIALS, 2016, 28 (07) :2400-2407
[42]   Manipulating Li2S2/Li2S mixed discharge products of all-solid-state lithium sulfur batteries for improved cycle life [J].
Kim, Jung Tae ;
Rao, Adwitiya ;
Nie, Heng-Yong ;
Hu, Yang ;
Li, Weihan ;
Zhao, Feipeng ;
Deng, Sixu ;
Hao, Xiaoge ;
Fu, Jiamin ;
Luo, Jing ;
Duan, Hui ;
Wang, Changhong ;
Singh, Chandra Veer ;
Sun, Xueliang .
NATURE COMMUNICATIONS, 2023, 14 (01)
[43]   Li10GeP2S12-based solid electrolyte induced by high pressure for all-solid-state batteries: A facile strategy of low-grain-boundary-resistance [J].
Zhang, Junkai ;
Lv, Juncheng ;
Lu, Wei ;
Li, Xin ;
Liu, Yang ;
Lang, Jihui ;
Liu, Jia ;
Wang, Zhao ;
Lu, Ming ;
Sun, Hao .
CHEMICAL ENGINEERING JOURNAL, 2024, 487
[44]   All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling [J].
Takamasa Ohtomo ;
Akitoshi Hayashi ;
Masahiro Tatsumisago ;
Koji Kawamoto .
Journal of Solid State Electrochemistry, 2013, 17 :2551-2557
[45]   All-solid-state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-step mechanical milling [J].
Ohtomo, Takamasa ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro ;
Kawamoto, Koji .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (10) :2551-2557
[46]   Incorporating Solvate and Solid Electrolytes for All-Solid-State Li2S Batteries with High Capacity and Long Cycle Life [J].
Shin, Minjeong ;
Gewirth, Andrew A. .
ADVANCED ENERGY MATERIALS, 2019, 9 (26)
[47]   All-solid-state Li-ion batteries with commercially available electrolytes: A feasibility review [J].
Goetz, Rainer ;
Streng, Raphael ;
Sterzinger, Johannes ;
Steeger, Tim ;
Kaye, Matti M. ;
Vitort, Maksym ;
Bandarenka, Aliaksandr S. .
INFOMAT, 2024, 6 (12)
[48]   Facile Synthesis of Li7P2S8I for All-Solid-State Lithium Batteries [J].
Yu, Haichuan ;
Yang, Jing ;
Liu, Gaozhan ;
Cao, Panlei ;
Jia, Junjie ;
Yao, Xiayin .
ACS APPLIED ENERGY MATERIALS, 2025, 8 (07) :4586-4591
[49]   The Detrimental Effects of Carbon Additives in Li10GeP2S12-Based Solid-State Batteries [J].
Zhang, Wenbo ;
Leichtweiss, Thomas ;
Culver, Sean. P. ;
Koerver, Raimund ;
Das, Dyuman ;
Weber, Dominik A. ;
Zeier, Wolfgang G. ;
Janek, Juergen .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (41) :35888-35896
[50]   Hydrogen-Rich Argyrodite Solid Electrolytes for NCM/Li All-Solid-State batteries [J].
Lee, Taegyoung ;
Park, Hyunseo ;
Joo, Seunghee ;
Kim, Hyerim ;
Kim, Jeonghyun ;
Kim, Taeseung ;
Lee, Wonrak ;
Kim, Youngbok ;
Kim, Jiyoung ;
Kim, Kyungsu ;
Cho, Woosuk ;
Kim, Sangryun .
ACS ENERGY LETTERS, 2024, 9 (09) :4493-4500