LiAlO2-Modified Li Negative Electrode with Li10GeP2S12 Electrolytes for Stable All-Solid-State Lithium Batteries

被引:13
作者
Chang, Xinshuang [1 ,2 ]
Weng, Wei [1 ]
Li, Mengqi [1 ]
Wu, Ming [1 ]
Chen, George Z. [3 ]
Fow, Kam Loon [2 ,4 ,5 ]
Yao, Xiayin [1 ,6 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[2] Univ Nottingham Ningbo China, Fac Sci & Engn, Dept Chem & Environm Engn, Ningbo 315100, Zhejiang, Peoples R China
[3] Univ Nottingham, Fac Engn, Dept Chem & Environm Engn, Nottingham NG7 2RD, England
[4] Univ Nottingham Ningbo China, Key Lab Carbonaceous Wastes Proc & Proc Intensific, Ningbo 315100, Zhejiang, Peoples R China
[5] Univ Nottingham Ningbo China, Nottingham Ningbo China Beacons Excellence Res & I, Ningbo 315201, Zhejiang, Peoples R China
[6] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
LiAlO2; interface modification; lithium negative electrode; Li10GeP2S12; magnetic sputtering; all-solid-state batteries; METAL ANODE; INTERPHASE; STABILITY; LAYER;
D O I
10.1021/acsami.3c03242
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium (Li) metal has an ultrahigh specific capacity in theory with an extremely negative potential (versus hydrogen), receiving extensive attention as a negative electrode material in batteries. However, the formation of Li dendrites and unstable interfaces due to the direct Li metal reaction with solid sulfide-based electrolytes hinders the application of lithium metal in all-solid-state batteries. In this work, we report the successful fabrication of a LiAlO2 interfacial layer on a Li/Li10GeP2S12 interface through magnetic sputtering. As LiAlO2 can be a good Li+ ion conductor but an electronic insulator, the LiAlO2 interface layer can effectively suppress Li dendrite growth and the severe interface reaction between Li and Li10GeP2S12. The Li@LiAlO2 200 nm/Li10GeP2S12/Li@LiAlO2 200 nm symmetric cell can remain stable for 3000 h at 0.1 mA cm-2 under 0.1 mAh cm-2. Moreover, unlike the rapid capacity decay of a cell with a pristine lithium negative electrode, the Li@LiAlO2 200 nm/Li10GeP2S12/LiCoO2@LiNbO3 cell delivers a reversible capacity of 118 mAh g-1 and a high energy efficiency of 96.6% after 50 cycles. Even at 1.0 C, the cell with the Li@LiAlO2 200 nm electrode can retain 95% of its initial capacity after 800 cycles.
引用
收藏
页码:21179 / 21186
页数:8
相关论文
共 50 条
[31]   Clarifying the Electro-Chemo-Mechanical Coupling in Li10SnP2S12 based All-Solid-State Batteries [J].
Sun, Fu ;
Wang, Chao ;
Osenberg, Markus ;
Dong, Kang ;
Zhang, Shu ;
Yang, Chao ;
Wang, Yantao ;
Hilger, Andre ;
Zhang, Jianjun ;
Dong, Shanmu ;
Markoetter, Henning ;
Manke, Ingo ;
Cui, Guanglei .
ADVANCED ENERGY MATERIALS, 2022, 12 (13)
[32]   Disentangling Phase and Morphological Evolution During the Formation of the Lithium Superionic Conductor Li10GeP2S12 [J].
Lu, Xin ;
Windmueller, Anna ;
Schmidt, Dana ;
Schoener, Sandro ;
Schierholz, Roland ;
Tsai, Chih-Long ;
Kungl, Hans ;
Liao, Xunfan ;
Yu, Shicheng ;
Tempel, Hermann ;
Chen, Yiwang ;
Eichel, Rudiger-A. .
SMALL, 2023, 19 (28)
[33]   Structures, Thermodynamics, and Li+ Mobility of Li10GeP2S12: A First-Principles Analysis [J].
Du, Fuming ;
Ren, Xiaodong ;
Yang, Jiong ;
Liu, Jianjun ;
Zhang, Wenqing .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (20) :10590-10595
[34]   Origin of Fast Ion Conduction in Li10GeP2S12, a Superionic Conductor [J].
Bhandari, Arihant ;
Bhattacharya, Jishnu .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (51) :29002-29010
[35]   Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review [J].
Reddy, Mogalahalli, V ;
Julien, Christian M. ;
Mauger, Alain ;
Zaghib, Karim .
NANOMATERIALS, 2020, 10 (08) :1-80
[36]   Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries [J].
Xu, R. C. ;
Wang, X. L. ;
Zhang, S. Z. ;
Xia, Y. ;
Xia, X. H. ;
Wu, J. B. ;
Tu, J. P. .
JOURNAL OF POWER SOURCES, 2018, 374 :107-112
[37]   Discharge voltage profile changes via physicochemical phenomena in cycled all-solid-state cells based on Li10GeP2S12 and LiNbO3-coated LiCoO2 [J].
Sun, Xueying ;
Yamada, Yuto ;
Hori, Satoshi ;
Li, Yuxiang ;
Suzuki, Kota ;
Hirayama, Masaaki ;
Kanno, Ryoji .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (33) :17905-17912
[38]   Design of composite positive electrode in all-solid-state secondary batteries with Li2S-P2S5 glass-ceramic electrolytes [J].
Mizuno, F ;
Hayashi, A ;
Tadanaga, K ;
Tatsumisago, M .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :711-714
[39]   Suppression of Electrochemical and Chemical Degradation of Li10GeP2S12 by an Elastomeric Artificial Solid Electrolyte Interphase [J].
Wang, Yang ;
Ko, Jeonghyun ;
Lee, Myungsuk ;
Klueter, Sam ;
Kallon, Elias ;
Hoerauf, John ;
Fontecha, Daniela ;
Lee, Cholho ;
Rubloff, Gary W. W. ;
Lee, Sang Bok ;
Kozen, Alexander C. C. .
ACS APPLIED ENERGY MATERIALS, 2023, 6 (15) :8266-8276
[40]   Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode [J].
Wenzel, Sebastian ;
Randau, Simon ;
Leichtweiss, Thomas ;
Weber, Dominik A. ;
Sann, Joachim ;
Zeier, Wolfgang G. ;
Janek, Juergen .
CHEMISTRY OF MATERIALS, 2016, 28 (07) :2400-2407