LiAlO2-Modified Li Negative Electrode with Li10GeP2S12 Electrolytes for Stable All-Solid-State Lithium Batteries

被引:14
作者
Chang, Xinshuang [1 ,2 ]
Weng, Wei [1 ]
Li, Mengqi [1 ]
Wu, Ming [1 ]
Chen, George Z. [3 ]
Fow, Kam Loon [2 ,4 ,5 ]
Yao, Xiayin [1 ,6 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[2] Univ Nottingham Ningbo China, Fac Sci & Engn, Dept Chem & Environm Engn, Ningbo 315100, Zhejiang, Peoples R China
[3] Univ Nottingham, Fac Engn, Dept Chem & Environm Engn, Nottingham NG7 2RD, England
[4] Univ Nottingham Ningbo China, Key Lab Carbonaceous Wastes Proc & Proc Intensific, Ningbo 315100, Zhejiang, Peoples R China
[5] Univ Nottingham Ningbo China, Nottingham Ningbo China Beacons Excellence Res & I, Ningbo 315201, Zhejiang, Peoples R China
[6] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
LiAlO2; interface modification; lithium negative electrode; Li10GeP2S12; magnetic sputtering; all-solid-state batteries; METAL ANODE; INTERPHASE; STABILITY; LAYER;
D O I
10.1021/acsami.3c03242
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium (Li) metal has an ultrahigh specific capacity in theory with an extremely negative potential (versus hydrogen), receiving extensive attention as a negative electrode material in batteries. However, the formation of Li dendrites and unstable interfaces due to the direct Li metal reaction with solid sulfide-based electrolytes hinders the application of lithium metal in all-solid-state batteries. In this work, we report the successful fabrication of a LiAlO2 interfacial layer on a Li/Li10GeP2S12 interface through magnetic sputtering. As LiAlO2 can be a good Li+ ion conductor but an electronic insulator, the LiAlO2 interface layer can effectively suppress Li dendrite growth and the severe interface reaction between Li and Li10GeP2S12. The Li@LiAlO2 200 nm/Li10GeP2S12/Li@LiAlO2 200 nm symmetric cell can remain stable for 3000 h at 0.1 mA cm-2 under 0.1 mAh cm-2. Moreover, unlike the rapid capacity decay of a cell with a pristine lithium negative electrode, the Li@LiAlO2 200 nm/Li10GeP2S12/LiCoO2@LiNbO3 cell delivers a reversible capacity of 118 mAh g-1 and a high energy efficiency of 96.6% after 50 cycles. Even at 1.0 C, the cell with the Li@LiAlO2 200 nm electrode can retain 95% of its initial capacity after 800 cycles.
引用
收藏
页码:21179 / 21186
页数:8
相关论文
共 50 条
[21]   Enabling superior electrochemical performances of Li10SnP2S12-based all-solid-state batteries using lithium halide electrolytes [J].
Luo, Qiyue ;
Yu, Chuang ;
Wei, Chaochao ;
Chen, Shuai ;
Chen, Shaoqing ;
Jiang, Ziling ;
Peng, Linfeng ;
Cheng, Shijie ;
Xie, Jia .
CERAMICS INTERNATIONAL, 2023, 49 (07) :11485-11493
[22]   Efficient Ion Diffusion and Stable Interphases for Designing Li2S-Based Positive Electrodes of All-Solid-State Li/S Batteries [J].
Fujita, Yushi ;
Motohashi, Kota ;
Sakuda, Atsushi ;
Hayashi, Akitoshi .
BATTERIES & SUPERCAPS, 2025,
[23]   Electrode/Electrolyte Interphase Formation by Lithium Iodide in a Li2S-Based Positive Electrode for All-Solid-State Batteries [J].
Fujita, Yushi ;
Ding, Jiong ;
Kowada, Hiroe ;
Mori, Shigeo ;
Motohashi, Kota ;
Sakuda, Atsushi ;
Hayashi, Akitoshi .
ACS APPLIED ENERGY MATERIALS, 2025, 8 (04) :2192-2199
[24]   Synthesis of lithium oxy-thiophosphate solid electrolytes with Li10GeP2S12 structure by a liquid phase process using 2-propanol [J].
Shiba, Shunichiro ;
Miura, Akira ;
Fujii, Yuta ;
Tadanaga, Kiyoharu ;
Terai, Kota ;
Utsuno, Futoshi ;
Higuchi, Hiroyuki .
RSC ADVANCES, 2023, 13 (33) :22895-22900
[25]   Unlocking the Poly(vinylidene fluoride-co-hexafluoropropylene)/Li10GeP2S12 composite solid-state Electrolytes for Dendrite-Free Li metal batteries assisting with perfluoropolyethers as bifunctional adjuvant [J].
Cong, Lina ;
Li, Yanan ;
Lu, Wei ;
Jie, Jing ;
Liu, Yulong ;
Sun, Liqun ;
Xie, Haiming .
JOURNAL OF POWER SOURCES, 2020, 446
[26]   Electrochemical characterization of Li10SnP2S12: An electrolyte or a negative electrode for solid state Li-ion batteries? [J].
Tarhouchi, Ilyas ;
Viallet, Virginie ;
Vinatier, Philippe ;
Menetrier, Michel .
SOLID STATE IONICS, 2016, 296 :18-25
[27]   Solid Electrolyte with Oxidation Tolerance Provides a High-Capacity Li2S-Based Positive Electrode for All-Solid-State Li/S Batteries [J].
Hakari, Takashi ;
Fujita, Yushi ;
Deguchi, Minako ;
Kawasaki, Yusuke ;
Otoyama, Misae ;
Yoneda, Yohei ;
Sakuda, Atsushi ;
Tatsumisago, Masahiro ;
Hayashi, Akitoshi .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (05)
[28]   Highly Stable Li/Li3BO3-Li2SO4 Interface and Application to Bulk Type All-Solid-State Lithium Metal Batteries [J].
Nagao, Kenji ;
Suyama, Motoshi ;
Kato, Atsutaka ;
Hotehama, Chie ;
Deguchi, Minako ;
Sakuda, Atsushi ;
Hayashi, Akitoshi ;
Tatsumisago, Masahiro .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) :3042-3048
[29]   Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10GeP2S12 Solid Electrolyte Interface [J].
Gao, Yue ;
Wang, Daiwei ;
Li, Yuguang C. ;
Yu, Zhaoxin ;
Mallouk, Thomas E. ;
Wang, Donghai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (41) :13608-13612
[30]   Heterogeneous Reinforcements to Mitigate Li Penetration through Solid Electrolytes in All-Solid-State Batteries [J].
Yuan, Chunhao ;
Sheldon, Brian W. ;
Xu, Jun .
ADVANCED ENERGY MATERIALS, 2022, 12 (39)