LiAlO2-Modified Li Negative Electrode with Li10GeP2S12 Electrolytes for Stable All-Solid-State Lithium Batteries

被引:12
作者
Chang, Xinshuang [1 ,2 ]
Weng, Wei [1 ]
Li, Mengqi [1 ]
Wu, Ming [1 ]
Chen, George Z. [3 ]
Fow, Kam Loon [2 ,4 ,5 ]
Yao, Xiayin [1 ,6 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[2] Univ Nottingham Ningbo China, Fac Sci & Engn, Dept Chem & Environm Engn, Ningbo 315100, Zhejiang, Peoples R China
[3] Univ Nottingham, Fac Engn, Dept Chem & Environm Engn, Nottingham NG7 2RD, England
[4] Univ Nottingham Ningbo China, Key Lab Carbonaceous Wastes Proc & Proc Intensific, Ningbo 315100, Zhejiang, Peoples R China
[5] Univ Nottingham Ningbo China, Nottingham Ningbo China Beacons Excellence Res & I, Ningbo 315201, Zhejiang, Peoples R China
[6] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
LiAlO2; interface modification; lithium negative electrode; Li10GeP2S12; magnetic sputtering; all-solid-state batteries; METAL ANODE; INTERPHASE; STABILITY; LAYER;
D O I
10.1021/acsami.3c03242
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium (Li) metal has an ultrahigh specific capacity in theory with an extremely negative potential (versus hydrogen), receiving extensive attention as a negative electrode material in batteries. However, the formation of Li dendrites and unstable interfaces due to the direct Li metal reaction with solid sulfide-based electrolytes hinders the application of lithium metal in all-solid-state batteries. In this work, we report the successful fabrication of a LiAlO2 interfacial layer on a Li/Li10GeP2S12 interface through magnetic sputtering. As LiAlO2 can be a good Li+ ion conductor but an electronic insulator, the LiAlO2 interface layer can effectively suppress Li dendrite growth and the severe interface reaction between Li and Li10GeP2S12. The Li@LiAlO2 200 nm/Li10GeP2S12/Li@LiAlO2 200 nm symmetric cell can remain stable for 3000 h at 0.1 mA cm-2 under 0.1 mAh cm-2. Moreover, unlike the rapid capacity decay of a cell with a pristine lithium negative electrode, the Li@LiAlO2 200 nm/Li10GeP2S12/LiCoO2@LiNbO3 cell delivers a reversible capacity of 118 mAh g-1 and a high energy efficiency of 96.6% after 50 cycles. Even at 1.0 C, the cell with the Li@LiAlO2 200 nm electrode can retain 95% of its initial capacity after 800 cycles.
引用
收藏
页码:21179 / 21186
页数:8
相关论文
共 50 条
  • [21] Enabling superior electrochemical performances of Li10SnP2S12-based all-solid-state batteries using lithium halide electrolytes
    Luo, Qiyue
    Yu, Chuang
    Wei, Chaochao
    Chen, Shuai
    Chen, Shaoqing
    Jiang, Ziling
    Peng, Linfeng
    Cheng, Shijie
    Xie, Jia
    CERAMICS INTERNATIONAL, 2023, 49 (07) : 11485 - 11493
  • [22] Synthesis of lithium oxy-thiophosphate solid electrolytes with Li10GeP2S12 structure by a liquid phase process using 2-propanol
    Shiba, Shunichiro
    Miura, Akira
    Fujii, Yuta
    Tadanaga, Kiyoharu
    Terai, Kota
    Utsuno, Futoshi
    Higuchi, Hiroyuki
    RSC ADVANCES, 2023, 13 (33) : 22895 - 22900
  • [23] Electrode/Electrolyte Interphase Formation by Lithium Iodide in a Li2S-Based Positive Electrode for All-Solid-State Batteries
    Fujita, Yushi
    Ding, Jiong
    Kowada, Hiroe
    Mori, Shigeo
    Motohashi, Kota
    Sakuda, Atsushi
    Hayashi, Akitoshi
    ACS APPLIED ENERGY MATERIALS, 2025, 8 (04): : 2192 - 2199
  • [24] Unlocking the Poly(vinylidene fluoride-co-hexafluoropropylene)/Li10GeP2S12 composite solid-state Electrolytes for Dendrite-Free Li metal batteries assisting with perfluoropolyethers as bifunctional adjuvant
    Cong, Lina
    Li, Yanan
    Lu, Wei
    Jie, Jing
    Liu, Yulong
    Sun, Liqun
    Xie, Haiming
    JOURNAL OF POWER SOURCES, 2020, 446
  • [25] Electrochemical characterization of Li10SnP2S12: An electrolyte or a negative electrode for solid state Li-ion batteries?
    Tarhouchi, Ilyas
    Viallet, Virginie
    Vinatier, Philippe
    Menetrier, Michel
    SOLID STATE IONICS, 2016, 296 : 18 - 25
  • [26] Solid Electrolyte with Oxidation Tolerance Provides a High-Capacity Li2S-Based Positive Electrode for All-Solid-State Li/S Batteries
    Hakari, Takashi
    Fujita, Yushi
    Deguchi, Minako
    Kawasaki, Yusuke
    Otoyama, Misae
    Yoneda, Yohei
    Sakuda, Atsushi
    Tatsumisago, Masahiro
    Hayashi, Akitoshi
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (05)
  • [27] Highly Stable Li/Li3BO3-Li2SO4 Interface and Application to Bulk Type All-Solid-State Lithium Metal Batteries
    Nagao, Kenji
    Suyama, Motoshi
    Kato, Atsutaka
    Hotehama, Chie
    Deguchi, Minako
    Sakuda, Atsushi
    Hayashi, Akitoshi
    Tatsumisago, Masahiro
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) : 3042 - 3048
  • [28] Salt-Based Organic-Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li10GeP2S12 Solid Electrolyte Interface
    Gao, Yue
    Wang, Daiwei
    Li, Yuguang C.
    Yu, Zhaoxin
    Mallouk, Thomas E.
    Wang, Donghai
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (41) : 13608 - 13612
  • [29] Heterogeneous Reinforcements to Mitigate Li Penetration through Solid Electrolytes in All-Solid-State Batteries
    Yuan, Chunhao
    Sheldon, Brian W.
    Xu, Jun
    ADVANCED ENERGY MATERIALS, 2022, 12 (39)
  • [30] Disentangling Phase and Morphological Evolution During the Formation of the Lithium Superionic Conductor Li10GeP2S12
    Lu, Xin
    Windmueller, Anna
    Schmidt, Dana
    Schoener, Sandro
    Schierholz, Roland
    Tsai, Chih-Long
    Kungl, Hans
    Liao, Xunfan
    Yu, Shicheng
    Tempel, Hermann
    Chen, Yiwang
    Eichel, Rudiger-A.
    SMALL, 2023, 19 (28)