How Hot Electron Generation at the Solid-Liquid Interface Is Different from the Solid-Gas Interface

被引:4
作者
Lee, Si Woo [1 ,2 ]
Kim, Heeyoung [2 ]
Park, Jeong Young [2 ]
机构
[1] Korea Natl Univ Educ KNUE, Dept Chem Educ, Chungbuk 28173, South Korea
[2] Korea Adv Inst Sci & Technol, Dept Chem, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
hot electron; catalytic nanodiode; chemicurrent; chemical energy conversion; hydrogen peroxide decomposition; solid-liquid interface; SURFACE-CHEMISTRY; OXIDE INTERFACES; WORK FUNCTION; IN-SITU; HYDROGEN; OXIDATION; NANOPARTICLES; NANODIODE; CO; DECOMPOSITION;
D O I
10.1021/acs.nanolett.3c00173
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Excitation of hot electrons by energy dissipation under exothermic chemical reactions on metal catalyst surfaces occurs at both solid-gas and solid-liquid interfaces. Despite extensive studies, a comparative operando study directly comparing electronic excitation by electronically nonadiabatic interactions at solid-gas and solid-liquid interfaces has not been reported. Herein, on the basis of our in situ techniques for monitoring energy dissipation as a chemicurrent using a Pt/n-Si nanodiode sensor, we observed the generation of hot electrons in both gas and liquid phases during H2O2 decomposition. As a result of comparing the current signal and oxygen evolution rate in the two phases, surprisingly, the efficiency of reaction-induced excitation of hot electrons increased by similar to 100 times at the solid-liquid interface compared to the solid-gas interface. The boost of hot electron excitation in the liquid phase is due to the presence of an ionic layer lowering the potential barrier at the junction for transferring hot electrons.
引用
收藏
页码:5373 / 5380
页数:8
相关论文
共 56 条
[1]   Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001) [J].
Bonn, M ;
Funk, S ;
Hess, C ;
Denzler, DN ;
Stampfl, C ;
Scheffler, M ;
Wolf, M ;
Ertl, G .
SCIENCE, 1999, 285 (5430) :1042-1045
[2]   Electron-hole pair excitation determines the mechanism of hydrogen atom adsorption [J].
Buenermann, Oliver ;
Jiang, Hongyan ;
Dorenkamp, Yvonne ;
Kandratsenka, Alexander ;
Janke, Svenja M. ;
Auerbach, Daniel J. ;
Wodtke, Alec M. .
SCIENCE, 2015, 350 (6266) :1346-1349
[3]   Carbon Dioxide Activation and Reaction Induced by Electron Transfer at an Oxide-Metal Interface [J].
Calaza, Florencia ;
Stiehler, Christian ;
Fujimori, Yuichi ;
Sterrer, Martin ;
Beeg, Sebastian ;
Ruiz-Oses, Miguel ;
Nilius, Niklas ;
Heyde, Markus ;
Parviainen, Teemu ;
Honkala, Karoliina ;
Hakkinen, Hannu ;
Freund, Hans-Joachim .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (42) :12484-12487
[4]  
Campbell CT, 2012, NAT CHEM, V4, P597, DOI 10.1038/nchem.1412
[5]  
Christopher P, 2011, NAT CHEM, V3, P467, DOI [10.1038/NCHEM.1032, 10.1038/nchem.1032]
[6]  
Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/NPHOTON.2013.238, 10.1038/nphoton.2013.238]
[7]   From solid-vacuum to solid-gas and solid-liquid interfaces: In situ studies of structure and dynamics under relevant conditions [J].
Escudero, Carlos ;
Salmeron, Miguel .
SURFACE SCIENCE, 2013, 607 :2-9
[8]   Chemically induced electronic excitations at metal surfaces [J].
Gergen, B ;
Nienhaus, H ;
Weinberg, WH ;
McFarland, EW .
SCIENCE, 2001, 294 (5551) :2521-2523
[9]   Enhancing hot electron collection with nanotube-based three-dimensional catalytic nanodiode under hydrogen oxidation [J].
Goddeti, Kalyan C. ;
Lee, Hyosun ;
Jeon, Beomjoon ;
Park, Jeong Young .
CHEMICAL COMMUNICATIONS, 2018, 54 (65) :8968-8971
[10]   Hydrogen Oxidation-Driven Hot Electron Flow Detected by Catalytic Nanodiodes [J].
Hervier, Antoine ;
Renzas, J. Russell ;
Park, Jeong Y. ;
Somorjai, Gabor A. .
NANO LETTERS, 2009, 9 (11) :3930-3933