PHPB Attenuated Cognitive Impairment in Type 2 Diabetic KK-Ay Mice by Modulating SIRT1/Insulin Signaling Pathway and Inhibiting Generation of AGEs

被引:4
|
作者
Li, Jiang [1 ]
Xu, Shaofeng [1 ]
Wang, Ling [1 ]
Wang, Xiaoliang [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Inst Mat Med, State Key Lab Bioact Subst & Funct Nat Med, Beijing 100050, Peoples R China
关键词
potassium 2-(1-hydroxypentyl)-benzoate (PHPB); diabetic encephalopathy (DE); advanced glycation end products (AGEs); insulin signaling pathway; oxidative stress; GLYCATION END-PRODUCTS; ALZHEIMERS-DISEASE; METHYLGLYOXAL; PLASTICITY; RATS;
D O I
10.3390/ph16020305
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Diabetes mellitus (DM) has been recognized as an increased risk factor for cognitive impairment, known as diabetic encephalopathy (DE). Hyperglycemia and insulin resistance are the main initiators of DE, which is related to the accumulation of advanced glycation end products (AGEs). Potassium 2-(1-hydroxypentyl)-benzoate (PHPB), a derivative of 3-n-butylphthalide (dl-NBP), has emerged various properties including improved mitochondrial function, antioxidant, anti-neuroinflammation, and neuroprotective effects. The present study aimed to investigate the neuroprotective effect of PHPB against AGEs accumulation in type 2 diabetic KK-Ay mice model with DE and further explore the underlying mechanisms. The results showed that PHPB markedly ameliorated the spatial learning ability of KK-Ay mice in the Morris water maze and decreased AD-like pathologic changes (Tau hyperphosphorylation) in the cortex. Furthermore, we found that PHPB treatment significantly reduced AGEs generation via up-regulation of glyoxalase-1 (GLO1) protein and enhancement of methylglyoxal (MG) trapping, while there was no obvious difference in levels of glucose in plasma or brain, contents of total cholesterol (TC), triglycerides (TG), and plasma insulin. Also, PHPB treatment improved the insulin signaling pathway by increasing sirtuin1 (SIRT1) deacetylase activity and attenuated oxidative stress evidenced by elevating glucose-6-phosphate dehydrogenase (G-6-PD) protein expression, promoting the production of reduced glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate (NADPH), restoring mitochondrial membrane potential, increasing adenosine triphosphate (ATP) generation, and reducing malondialdehyde (MDA) levels in the brain. Taken together, PHPB exhibited a beneficial effect on DE, which involved modulating the SIRT1/insulin signaling pathway and reducing oxidative stress by inhibiting the generation of AGEs.
引用
收藏
页数:17
相关论文
共 44 条
  • [41] Diet restriction and exercise alleviate cognitive reduction of high fat diet (HFD)-induced obese mice by rescuing inflammation-mediated compromised insulin signaling pathway through activating AMPK/SIRT1 signal pathway and suppressing TLR4 signal pathway
    Zhang, Hu
    Zhang, Ye
    Liang, Jiling
    Li, Jiahang
    He, Miao
    Liu, Xin
    Huang, Jielun
    Wang, Minghui
    Fan, Jingjing
    Chen, Ning
    FOOD SCIENCE AND HUMAN WELLNESS, 2024, 13 (06) : 3171 - 3180
  • [42] Aerobic exercise improves cognitive impairment in mice with type 2 diabetes by regulating the MALAT1/miR-382-3p/BDNF signaling pathway in serum-exosomes
    Mingzhu Wang
    Kangling Xie
    Shengnan Zhao
    Nan Jia
    Yujiao Zong
    Wenping Gu
    Ying Cai
    Molecular Medicine, 29
  • [43] Aerobic exercise improves cognitive impairment in mice with type 2 diabetes by regulating the MALAT1/miR-382-3p/BDNF signaling pathway in serum-exosomes
    Wang, Mingzhu
    Xie, Kangling
    Zhao, Shengnan
    Jia, Nan
    Zong, Yujiao
    Gu, Wenping
    Cai, Ying
    MOLECULAR MEDICINE, 2023, 29 (01)
  • [44] Vitamin K1 inversely correlates with glycemia and insulin resistance in patients with type 2 diabetes (T2D) and positively regulates SIRT1/AMPK pathway of glucose metabolism in liver of T2D mice and hepatocytes cultured in high glucose
    Dihingia, Anjum
    Ozah, Dibyajyoti
    Ghosh, Shatadal
    Sarkar, Abhijit
    Baruah, Pranab Kumar
    Kalita, Jatin
    Sil, Parames C.
    Manna, Prasenjit
    JOURNAL OF NUTRITIONAL BIOCHEMISTRY, 2018, 52 : 103 - 114