A multipoint vorticity mixed finite element method for incompressible Stokes flow

被引:4
作者
Boon, Wietse M. [1 ]
Fumagalli, Alessio [1 ]
机构
[1] Politecn Milan, MOX Modeling & Sci Comp, Piazza Leonardo da Vinci 32, Milan, Italy
关键词
Multipoint vorticity; Mixed finite element method; Stokes flow; Hybridization;
D O I
10.1016/j.aml.2022.108498
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a mixed finite element method for Stokes flow with one degree of freedom per element and facet of simplicial grids. The method is derived by considering the vorticity-velocity-pressure formulation and eliminating the vorticity locally through the use of a quadrature rule. The discrete solution is pointwise divergence-free and the method is pressure robust. The theoretically derived convergence rates are confirmed by numerical experiments.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 9 条
  • [1] [Anonymous], PYGEON PYTHON PACKAG, DOI [10.5281/zenodo.7006771, DOI 10.5281/ZENODO.7006771]
  • [2] MIXED FINITE ELEMENT APPROXIMATION OF THE VECTOR LAPLACIAN WITH DIRICHLET BOUNDARY CONDITIONS
    Arnold, Douglas N.
    Falk, Richard S.
    Gopalakrishnan, Jay
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (09)
  • [3] A multipoint stress-flux mixed finite element method for the Stokes-Biot model
    Caucao, Sergio
    Li, Tongtong
    Yotov, Ivan
    [J]. NUMERISCHE MATHEMATIK, 2022, 152 (02) : 411 - 473
  • [4] Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem
    Dubois, F
    Salaün, M
    Salmon, S
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (11): : 1395 - 1451
  • [5] STOKES COMPLEXES AND THE CONSTRUCTION OF STABLE FINITE ELEMENTS WITH POINTWISE MASS CONSERVATION
    Falk, Richard S.
    Neilan, Michael
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) : 1308 - 1326
  • [6] Hanot M, 2022, Arxiv, DOI arXiv:2106.05146
  • [7] PorePy: an open-source software for simulation of multiphysics processes in fractured porous media
    Keilegavlen, Eirik
    Berge, Runar
    Fumagalli, Alessio
    Starnoni, Michele
    Stefansson, Ivar
    Varela, Jhabriel
    Berre, Inga
    [J]. COMPUTATIONAL GEOSCIENCES, 2021, 25 (01) : 243 - 265
  • [8] LOCAL CODERIVATIVES AND APPROXIMATION OF HODGE LAPLACE PROBLEMS
    Lee, Jeonghun J.
    Winther, Ragnar
    [J]. MATHEMATICS OF COMPUTATION, 2018, 87 (314) : 2709 - 2735
  • [9] A multipoint flux mixed finite element method
    Wheeler, Mary F.
    Yotov, Ivan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (05) : 2082 - 2106