Generic Gelfand-Tsetlin representations of Uqtw(so3) and Uqtw(so4)

被引:1
作者
Disch, Jordan [1 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
Quantum group; representation; Gelfand-Tsetlin; quantum algebra; orthogonal; COIDEAL SUBALGEBRAS; ZETLIN MODULES;
D O I
10.1142/S0219498823501281
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct generic Gelfand-Tsetlin representations of the iota quantum groups U-q(tw)(so(3)) and U-q(tw)(so(4)). These representations are infinite-dimensional analogs to the finite-dimensional irreducible representations provided by Gavrilik and Klimyk in [q-deformed orthogonal and pseudo-orthogonal algebras and their representations, Lett. Math. Phys. 21 (1991) 215-220]. They are quantum analogs of generic Gelfand-Tsetlin representations constructed by Mazorchuk in [On Gelfand-Zetlin modules over orthogonal Lie algebras, Algebra Colloq. 8 (2001) 345-360]. We give sufficient conditions for irreducibility and provide an upper bound for the length with the help of Casimir elements found by Molev, Ragoucy and Sorba.
引用
收藏
页数:21
相关论文
共 12 条
[1]  
Chen XH, 2021, COMMUN MATH PHYS, V382, P1015, DOI 10.1007/s00220-021-04035-9
[2]  
DROZD YA, 1994, NATO ADV SCI INST SE, V424, P79
[3]   Q-DEFORMED ORTHOGONAL AND PSEUDO-ORTHOGONAL ALGEBRAS AND THEIR REPRESENTATIONS [J].
GAVRILIK, AM ;
KLIMYK, AU .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 21 (03) :215-220
[4]   THE REPRESENTATIONS OF U(Q)(SO4) AND U(Q)(SO3,1) [J].
GAVRILIK, AM .
THEORETICAL AND MATHEMATICAL PHYSICS, 1993, 95 (02) :546-551
[5]  
Gelfand I., 1950, DOKL AKAD NAUK SSSR, V71, P1017, DOI 0037.15302
[6]  
Letzter G, 2002, MATH SCI R, V43, P117
[7]  
Mazorchuk V, 2001, ALGEBR COLLOQ, V8, P345
[8]   On Gelfand-Zetlin modules over Uq(gln) [J].
Mazorchuk, V ;
Turowska, L .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2000, 50 (01) :139-144
[9]  
Molev A.I., 2007, Mathematical Surveys and Monographs, V143, P400
[10]   Coideal subalgebras in quantum affine algebras [J].
Molev, AI ;
Ragoucy, E ;
Sorba, P .
REVIEWS IN MATHEMATICAL PHYSICS, 2003, 15 (08) :789-822