On a Kurzweil type theorem via ubiquity

被引:3
作者
Kim, Taehyeong [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
关键词
inhomogeneous Diophantine approximation; zero-one law; ubiq-; uity; DIOPHANTINE APPROXIMATION;
D O I
10.4064/aa230609-27-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kurzweil's theorem (1955) is concerned with zero-one laws for well approximable targets in inhomogeneous Diophantine approximation under the badly approximable assumption. In this article, we prove the divergent part of a Kurzweil type theorem via a suitable construction of ubiquitous systems when the badly approximable assumption is relaxed. Moreover, we also discuss some counterparts of Kurzweil's theorem.
引用
收藏
页码:181 / 191
页数:12
相关论文
共 19 条
  • [1] Beresnevich V, 2006, MEM AM MATH SOC, V179, P1
  • [2] Beresnevich V., 2009, ANAL NUMBER THEORY, P38
  • [3] A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures
    Beresnevich, Victor
    Velani, Sanju
    [J]. ANNALS OF MATHEMATICS, 2006, 164 (03) : 971 - 992
  • [4] Bernik V., 1999, CAMBRIDGE TRACTS MAT, V137
  • [5] Blazeková O, 2011, XXIX INTERNATIONAL COLLOQUIUM ON THE MANAGEMENT OF EDUCATIONAL PROCESS, PT 1, P93
  • [6] ON EXPONENTS OF HOMOGENEOUS AND INHOMOGENEOUS DIOPHANTINE APPROXIMATION
    Bugeaud, Yann
    Laurent, Michel
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2005, 5 (04) : 747 - 766
  • [7] Hausdorff Dimension in Inhomogeneous Diophantine Approximation
    Bugeaud, Yann
    Kim, Dong Han
    Lim, Seonhee
    Rams, Michal
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (03) : 2108 - 2133
  • [8] Cassels J. W. S., 1957, Cambridge Tracts in Mathematics and Mathematical Physics, V45
  • [9] Chow S, 2020, ANN SCUOLA NORM-SCI, V21, P643
  • [10] DANI SG, 1985, J REINE ANGEW MATH, V359, P55