Upstream motion of chorus wave generation: comparisons with observations

被引:0
作者
Foster, John C. [1 ]
Erickson, Philip J. [1 ]
Omura, Yoshiharu [2 ]
机构
[1] Massachusetts Inst Technol Haystack Observ, Westford, MA 01886 USA
[2] Kyoto Univ, Res Inst Sustainable Humanosphere, Kyoto, Japan
关键词
VLF chorus; radiation belts; nonlinear processes; wave particle interactions; subpacket formation; wave generation region; upstream motion; HIGHLY RELATIVISTIC ELECTRONS; PARTICLE INTERACTIONS; ACCELERATION; PRECIPITATION;
D O I
10.3389/fspas.2024.1374331
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
An understanding of the development of strong very low frequency chorus elements is important in the study of the rapid MeV electron acceleration observed during radiation belt recovery events. During such events, chorus elements with long-duration (20-40 ms), strong (|Bw| 0.5-2.0 nT) subpackets with smoothly varying frequency and phase capable of producing nonlinear energy gain of 1%-2% for multi-MeV seed electrons. For such strong chorus elements, we examine the consequences of an upstream motion of the chorus wave generation region using Van Allen Probes observations and nonlinear theory. For a given upstream velocity, vs, resonant electron energy (50-350 keV) and pitch angle (105-115 deg) are uniquely determined for each wave frequency. We examine the effect of an upstream vs on the inhomogeneity factor that controls wave growth. For steadily increasing upstream motion as the chorus element evolves, vs/c ranging over [-0.001, -0.065], nonlinear wave growth takes place at >= 50% of the theoretical maximal value during the development of the observed strong subpackets. For the cases examined, resonant electron energies and pitch angles closely match those of the observed injected electron flux enhancements responsible for chorus development and the nonlinear acceleration of MeV radiation belt electrons.
引用
收藏
页数:13
相关论文
共 50 条
[31]   Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes [J].
Hartley, D. P. ;
Chen, Y. ;
Kletzing, C. A. ;
Denton, M. H. ;
Kurth, W. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (02) :1144-1152
[32]   Statistical Analysis of Transverse Size of Lower Band Chorus Waves Using Simultaneous Multisatellite Observations [J].
Shen, Xiao-Chen ;
Li, Wen ;
Ma, Qianli ;
Agapitov, Oleksiy ;
Nishimura, Yukitoshi .
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (11) :5725-5734
[33]   Electron diffusion by chorus waves: effects of latitude-dependent wave power spectrum [J].
Yu, Jiang ;
Wang, Jing ;
He, Zhaoguo ;
Chen, Zuzheng ;
Li, Liuyuan ;
Cui, Jun ;
Cao, Jinbin .
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2023, 10
[34]   Chorus Wave Modulation of Langmuir Waves in the Radiation Belts [J].
Li, Jinxing ;
Bortnik, Jacob ;
An, Xin ;
Li, Wen ;
Thorne, Richard M. ;
Zhou, Meng ;
Kurth, William S. ;
Hospodarsky, George B. ;
Funsten, Herbert O. ;
Spence, Harlan E. .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (23) :11713-11721
[35]   Resonant Electron Signatures in the Formation of Chorus Wave Subpackets [J].
Wang, Xueyi ;
Chen, Huayue ;
Omura, Yoshiharu ;
Hsieh, Yi-Kai ;
Chen, Lunjin ;
Lin, Yu ;
Zhang, Xiao-Jia ;
Xia, Zhiyang .
GEOPHYSICAL RESEARCH LETTERS, 2024, 51 (08)
[36]   Observations and modeling of forward and reflected chorus waves captured by THEMIS [J].
Agapitov, O. ;
Krasnoselskikh, V. ;
Zaliznyak, Yu. ;
Angelopoulos, V. ;
Le Contel, O. ;
Rolland, G. .
ANNALES GEOPHYSICAE, 2011, 29 (03) :541-550
[37]   A generation mechanism of chorus emissions using BWO theory [J].
Singh, Ashutosh K. ;
Patel, R. P. ;
Singh, R. ;
Singh, K. K. ;
Singh, A. K. .
23RD NATIONAL SYMPOSIUM ON PLASMA SCIENCE AND TECHNOLOGY (PLASMA-2008), 2010, 208
[38]   Polar PWI and CEPPAD observations of chorus emissions and radiation belt electron acceleration: Four case studies [J].
Sigsbee, K. ;
Menietti, J. D. ;
Santolik, O. ;
Blake, J. B. .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2008, 70 (14) :1774-1788
[39]   Field-aligned chorus wave spectral power in Earth's outer radiation belt [J].
Breuillard, H. ;
Agapitov, O. ;
Artemyev, A. ;
Kronberg, E. A. ;
Haaland, S. E. ;
Daly, P. W. ;
Krasnoselskikh, V. V. ;
Boscher, D. ;
Bourdarie, S. ;
Zaliznyak, Y. ;
Rolland, G. .
ANNALES GEOPHYSICAE, 2015, 33 (05) :583-597
[40]   Nonlinear Interactions Between Radiation Belt Electrons and Chorus Waves: Dependence on Wave Amplitude Modulation [J].
Gan, L. ;
Li, W. ;
Ma, Q. ;
Albert, J. M. ;
Artemyev, A., V ;
Bortnik, J. .
GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (04)