Towards Client Selection in Satellite Federated Learning

被引:3
|
作者
Wu, Changhao [1 ,2 ]
He, Siyang [1 ,2 ]
Yin, Zengshan [1 ,2 ]
Guo, Chongbin [1 ,2 ]
机构
[1] Chinese Acad Sci, Innovat Acad Microsatellites, Shanghai 201304, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 101408, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 03期
关键词
federated learning; client selection; satellite edge computing;
D O I
10.3390/app14031286
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Large-scale low Earth orbit (LEO) remote satellite constellations have become a brand new, massive source of space data. Federated learning (FL) is considered a promising distributed machine learning technology that can communicate optimally using these data. However, when applying FL in satellite networks, it is necessary to consider the unique challenges brought by satellite networks, which include satellite communication, computational ability, and the interaction relationship between clients and servers. This study focuses on the siting of parameter servers (PSs), whether terrestrial or extraterrestrial, and explores the challenges of implementing a satellite federated learning (SFL) algorithm equipped with client selection (CS). We proposed an index called "client affinity" to measure the contribution of the client to the global model, and a CS algorithm was designed in this way. A series of experiments have indicated the advantage of our SFL paradigm-that satellites function as the PS-and the availability of our CS algorithm. Our method can halve the convergence time of both FedSat and FedSpace, and improve the precision of the models by up to 80%.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Towards Instant Clustering Approach for Federated Learning Client Selection
    Arisdakessian, Sarhad
    Wahab, Omar Abdel
    Mourad, Azzam
    Otrok, Hadi
    2023 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS, ICNC, 2023, : 409 - 413
  • [2] Client Selection in Hierarchical Federated Learning
    Trindade, Silvana
    da Fonseca, Nelson L. S.
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (17): : 28480 - 28495
  • [3] Towards Bilateral Client Selection in Federated Learning Using Matching Game Theory
    Wehbi, Osama
    Arisdakessian, Sarhad
    Wahab, Omar Abdel
    Otrok, Hadi
    Otoum, Safa
    Mourad, Azzam
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2764 - 2769
  • [4] Dubhe: Towards Data Unbiasedness with Homomorphic Encryption in Federated Learning Client Selection
    Zhang, Shulai
    Li, Zirui
    Chen, Quan
    Zheng, Wenli
    Leng, Jingwen
    Guo, Minyi
    50TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, 2021,
  • [5] A review on client selection models in federated learning
    Panigrahi, Monalisa
    Bharti, Sourabh
    Sharma, Arun
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (06)
  • [6] Active Client Selection for Clustered Federated Learning
    Huang, Honglan
    Shi, Wei
    Feng, Yanghe
    Niu, Chaoyue
    Cheng, Guangquan
    Huang, Jincai
    Liu, Zhong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16424 - 16438
  • [7] Client Selection for Federated Bayesian Learning
    Yang, Jiarong
    Liu, Yuan
    Kassab, Rahif
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (04) : 915 - 928
  • [8] Maverick Matters: Client Contribution and Selection in Federated Learning
    Huang, Jiyue
    Hong, Chi
    Liu, Yang
    Chen, Lydia Y.
    Roos, Stefanie
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT II, 2023, 13936 : 269 - 282
  • [9] A comprehensive survey on client selection strategies in federated learning
    Li, Jian
    Chen, Tongbao
    Teng, Shaohua
    COMPUTER NETWORKS, 2024, 251
  • [10] A Review of Client Selection Mechanisms in Heterogeneous Federated Learning
    Wang, Xiao
    Ge, Lina
    Zhang, Guifeng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT II, 2023, 14087 : 761 - 772