Diagnosis of pathological speech with streamlined features for long short-term memory learning

被引:4
|
作者
Pham, Tuan D. [1 ]
Holmes, Simon B. [1 ]
Zou, Lifong [1 ]
Patel, Mangala [1 ]
Coulthard, Paul [1 ]
机构
[1] Queen Mary Univ London, Barts & London Fac Med & Dent, Turner St, London E1 2AD, England
关键词
Pathological voice; Diagnosis; Feature extraction; Deep learning; Artificial intelligence; PARKINSONS-DISEASE; WAVE-PROPAGATION; SAMPLING THEORY; CLASSIFICATION; SCATTERING;
D O I
10.1016/j.compbiomed.2024.107976
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Pathological speech diagnosis is crucial for identifying and treating various speech disorders. Accurate diagnosis aids in developing targeted intervention strategies, improving patients' communication abilities, and enhancing their overall quality of life. With the rising incidence of speech -related conditions globally, including oral health, the need for efficient and reliable diagnostic tools has become paramount, emphasizing the significance of advanced research in this field. Methods: This paper introduces novel features for deep learning in the analysis of short voice signals. It proposes the incorporation of time -space and time-frequency features to accurately discern between two distinct groups: Individuals exhibiting normal vocal patterns and those manifesting pathological voice conditions. These advancements aim to enhance the precision and reliability of diagnostic procedures, paving the way for more targeted treatment approaches. Results: Utilizing a publicly available voice database, this study carried out training and validation using long short-term memory (LSTM) networks learning on the combined features, along with a data balancing strategy. The proposed approach yielded promising performance metrics: 90% accuracy, 93% sensitivity, 87% specificity, 88% precision, an F1 score of 0.90, and an area under the receiver operating characteristic curve of 0.96. The results surpassed those obtained by the networks trained using wavelet -time scattering coefficients, as well as several algorithms trained with alternative feature types. Conclusions: The incorporation of time-frequency and time -space features extracted from short segments of voice signals for LSTM learning demonstrates significant promise as an AI tool for the diagnosis of speech pathology. The proposed approach has the potential to enhance the accuracy and allow for real-time pathological speech assessment, thereby facilitating more targeted and effective therapeutic interventions.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A review on the long short-term memory model
    Greg Van Houdt
    Carlos Mosquera
    Gonzalo Nápoles
    Artificial Intelligence Review, 2020, 53 : 5929 - 5955
  • [22] Long Short-Term Memory in Intelligent Buildings
    Serrano, Will
    2020 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRONICS & COMMUNICATIONS ENGINEERING (ICCECE, 2020, : 1 - 8
  • [23] Learning to Track by Bi-directional Long Short-Term Memory Networks
    Pan, Chen
    Shi, Dianxi
    Guan, Naiyang
    Zhang, Yongjun
    Wang, Liujing
    Jin, Songchang
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 783 - 790
  • [24] Forecasting Water Demand With the Long Short-Term Memory Deep Learning Mode
    Xu, Junhua
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGIES AND SYSTEMS APPROACH, 2023, 17 (01)
  • [25] Fault Diagnosis of Motor Bearings Based on a Convolutional Long Short-Term Memory Network of Bayesian Optimization
    Li, Zhen
    Wang, Yang
    Ma, Jianeng
    IEEE ACCESS, 2021, 9 : 97546 - 97556
  • [26] Automated Sleep Apnea Detection in Raw Respiratory Signals Using Long Short-Term Memory Neural Networks
    Van Steenkiste, Tom
    Groenendaal, Willemijn
    Deschrijver, Dirk
    Dhaene, Tom
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (06) : 2354 - 2364
  • [27] Classification of thermoluminescence features of CaCO3 with long short-term memory model
    Isik, Esme
    Toktamis, Dilek
    Er, Mehmet Bilal
    Hatib, Muhammed
    LUMINESCENCE, 2021, 36 (07) : 1684 - 1689
  • [28] Short-Term Traffic Prediction Using Deep Learning Long Short-Term Memory: Taxonomy, Applications, Challenges, and Future Trends
    Khan, Anwar
    Fouda, Mostafa M.
    Do, Dinh-Thuan
    Almaleh, Abdulaziz
    Rahman, Atiq Ur
    IEEE ACCESS, 2023, 11 : 94371 - 94391
  • [29] Application of Deep Learning Long Short-Term Memory in Energy Demand Forecasting
    Al Khafaf, Nameer
    Jalili, Mandi
    Sokolowski, Peter
    ENGINEERING APPLICATIONS OF NEURAL NETWORKSX, 2019, 1000 : 31 - 42
  • [30] Short-Term Prediction of Wind Power Based on Deep Long Short-Term Memory
    Qu Xiaoyun
    Kang Xiaoning
    Zhang Chao
    Jiang Shuai
    Ma Xiuda
    2016 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2016, : 1148 - 1152