Diagnosis of pathological speech with streamlined features for long short-term memory learning

被引:4
|
作者
Pham, Tuan D. [1 ]
Holmes, Simon B. [1 ]
Zou, Lifong [1 ]
Patel, Mangala [1 ]
Coulthard, Paul [1 ]
机构
[1] Queen Mary Univ London, Barts & London Fac Med & Dent, Turner St, London E1 2AD, England
关键词
Pathological voice; Diagnosis; Feature extraction; Deep learning; Artificial intelligence; PARKINSONS-DISEASE; WAVE-PROPAGATION; SAMPLING THEORY; CLASSIFICATION; SCATTERING;
D O I
10.1016/j.compbiomed.2024.107976
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Pathological speech diagnosis is crucial for identifying and treating various speech disorders. Accurate diagnosis aids in developing targeted intervention strategies, improving patients' communication abilities, and enhancing their overall quality of life. With the rising incidence of speech -related conditions globally, including oral health, the need for efficient and reliable diagnostic tools has become paramount, emphasizing the significance of advanced research in this field. Methods: This paper introduces novel features for deep learning in the analysis of short voice signals. It proposes the incorporation of time -space and time-frequency features to accurately discern between two distinct groups: Individuals exhibiting normal vocal patterns and those manifesting pathological voice conditions. These advancements aim to enhance the precision and reliability of diagnostic procedures, paving the way for more targeted treatment approaches. Results: Utilizing a publicly available voice database, this study carried out training and validation using long short-term memory (LSTM) networks learning on the combined features, along with a data balancing strategy. The proposed approach yielded promising performance metrics: 90% accuracy, 93% sensitivity, 87% specificity, 88% precision, an F1 score of 0.90, and an area under the receiver operating characteristic curve of 0.96. The results surpassed those obtained by the networks trained using wavelet -time scattering coefficients, as well as several algorithms trained with alternative feature types. Conclusions: The incorporation of time-frequency and time -space features extracted from short segments of voice signals for LSTM learning demonstrates significant promise as an AI tool for the diagnosis of speech pathology. The proposed approach has the potential to enhance the accuracy and allow for real-time pathological speech assessment, thereby facilitating more targeted and effective therapeutic interventions.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Audiovisual Speech Activity Detection with Advanced Long Short-Term Memory
    Tao, Fei
    Busso, Carlos
    19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 1244 - 1248
  • [2] Long Short-Term Memory Recurrent Neural Network for Automatic Speech Recognition
    Oruh, Jane
    Viriri, Serestina
    Adegun, Adekanmi
    IEEE ACCESS, 2022, 10 : 30069 - 30079
  • [3] Emotion Recognition From Speech and Text using Long Short-Term Memory
    Venkateswarlu, Sonagiri China
    Jeevakala, Siva Ramakrishna
    Kumar, Naluguru Udaya
    Munaswamy, Pidugu
    Pendyala, Dhanalaxmi
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (04) : 11166 - 11169
  • [4] APPLICATION RESEARCH ON LONG SHORT-TERM MEMORY NETWORK IN FAULT DIAGNOSIS
    Wang, Wei-Feng
    Qiu, Xue-Huan
    Chen, Cai-Sen
    Lin, Bo
    Zhang, Hui-Min
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 2, 2018, : 360 - 365
  • [5] Detection of Epileptic Seizures via Deep Long Short-Term Memory
    Patan, Krzysztof
    Rutkowski, Grzegorz
    CURRENT TRENDS IN BIOMEDICAL ENGINEERING AND BIOIMAGES ANALYSIS, 2020, 1033 : 166 - 178
  • [6] Generalizing Long Short-Term Memory Network for Deep Learning from Generic Data
    Han, Huimei
    Zhu, Xingquan
    Li, Ying
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2020, 14 (02)
  • [7] Neonatal sleep stage identification using long short-term memory learning system
    Luay Fraiwan
    Mohanad Alkhodari
    Medical & Biological Engineering & Computing, 2020, 58 : 1383 - 1391
  • [8] Neonatal sleep stage identification using long short-term memory learning system
    Fraiwan, Luay
    Alkhodari, Mohanad
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2020, 58 (06) : 1383 - 1391
  • [9] Convolutional Long Short-Term Memory Autoencoder-Based Feature Learning for Fault Detection in Industrial Processes
    Yu, Jianbo
    Liu, Xing
    Ye, Lyujiangnan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [10] A long short-term memory deep learning framework for explainable recommendation
    Zarzour, Hafed
    Jararweh, Yaser
    Hammad, Mahmoud M.
    Al-Smadi, Mohammed
    2020 11TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2020, : 233 - 237