Illumination Insensitive Monocular Depth Estimation Based on Scene Object Attention and Depth Map Fusion

被引:0
|
作者
Wen, Jing [1 ,2 ]
Ma, Haojiang [1 ,2 ]
Yang, Jie [1 ,2 ]
Zhang, Songsong [1 ,2 ]
机构
[1] Shanxi Univ, Taiyuan, Peoples R China
[2] Minist Educ, Key Lab Comp Intelligence & Chinese Proc, Taiyuan, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT X | 2024年 / 14434卷
关键词
Monocular depth estimation; Scene object attention; Weighted depth map fusion; Image enhancement; Illumination insensitivity;
D O I
10.1007/978-981-99-8549-4_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Monocular depth estimation (MDE) is a crucial but challenging computer vision (CV) task which suffers from lighting sensitivity, blurring of neighboring depth edges, and object omissions. To address these problems, we propose an illumination insensitive monocular depth estimation method based on scene object attention and depth map fusion. Firstly, we design a low-light image selection algorithm, incorporated with the EnlightenGAN model, to improve the image quality of the training dataset and reduce the influence of lighting on depth estimation. Secondly, we develop a scene object attention mechanism (SOAM) to address the issue of incomplete depth information in natural scenes. Thirdly, we design a weighted depth map fusion (WDMF) module to fuse depth maps with various visual granularity and depth information, effectively resolving the problem of blurred depth map edges. Extensive experiments on the KITTI dataset demonstrate that our method effectively reduces the sensitivity of the depth estimation model to light and yields depth maps with more complete scene object contours.
引用
收藏
页码:358 / 370
页数:13
相关论文
共 50 条
  • [41] Monocular Depth Estimation Based on Deep Learning:A Survey
    Ruan Xiaogang
    Yan Wenjing
    Huang Jing
    Guo Peiyuan
    Guo Wei
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2436 - 2440
  • [42] FF-GAN: Feature Fusion GAN for Monocular Depth Estimation
    Jia, Ruiming
    Li, Tong
    Yuan, Fei
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2020, 2020, 12305 : 167 - 179
  • [43] Residual Vision Transformer and Adaptive Fusion Autoencoders for Monocular Depth Estimation
    Yang, Wei-Jong
    Wu, Chih-Chen
    Yang, Jar-Ferr
    SENSORS, 2025, 25 (01)
  • [44] A Monocular SLAM System Based on ResNet Depth Estimation
    Li, Zheng
    Yu, Lei
    Pan, Zihao
    IEEE SENSORS JOURNAL, 2023, 23 (13) : 15106 - 15114
  • [45] Monocular depth estimation based on deep learning: An overview
    ChaoQiang Zhao
    QiYu Sun
    ChongZhen Zhang
    Yang Tang
    Feng Qian
    Science China Technological Sciences, 2020, 63 : 1612 - 1627
  • [46] Monocular depth estimation based on deep learning: An overview
    Zhao, ChaoQiang
    Sun, QiYu
    Zhang, ChongZhen
    Tang, Yang
    Qian, Feng
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (09) : 1612 - 1627
  • [47] Unsupervised monocular depth estimation based on edge enhancement
    Qu Y.
    Chen Y.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2024, 46 (01): : 71 - 79
  • [48] Sparse Transformer-based bins and Polarized Cross Attention decoder for monocular depth estimation
    Wang, Hai-Kun
    Du, Jiahui
    Song, Ke
    Cui, Limin
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2024, 54
  • [49] Monocular Depth Estimation with Joint Attention Feature Distillation and Wavelet-Based Loss Function
    Liu, Peng
    Zhang, Zonghua
    Meng, Zhaozong
    Gao, Nan
    SENSORS, 2021, 21 (01) : 1 - 21
  • [50] The Constraints between Edge Depth and Uncertainty for Monocular Depth Estimation
    Wu, Shouying
    Li, Wei
    Liang, Binbin
    Huang, Guoxin
    ELECTRONICS, 2021, 10 (24)